论文标题

量化近似传送和量子误差校正的性能,通过对称的两-PPT扩展性校正

Quantifying the performance of approximate teleportation and quantum error correction via symmetric two-PPT-extendibility

论文作者

Holdsworth, Tharon, Singh, Vishal, Wilde, Mark M.

论文摘要

量子传送的理想实现依赖于获得最大纠结状态的访问。但是,实际上,这种理想的状态通常不可用,而是只能实现近似传送。考虑到这一点,我们提出了一种使用任意资源状态时量化近似传送性能的方法。更具体地说,在将近似传送的任务构建为对单向本地操作和经典通信(LOCC)通道的仿真误差的优化之后,我们通过在较大的两种pppt-extendible通道集上优化了该优化任务的半定义放松。本文中的主要分析计算包括利用身份通道的统一协方差对称性,以显着降低后一种优化的计算成本。接下来,通过利用近似传送和量子误差校正之间的已知连接,我们还应用这些概念来建立在给定量子通道上近似量子误差校正的性能的界限。最后,我们评估了资源状态和渠道的各种示例的界限。

The ideal realization of quantum teleportation relies on having access to a maximally entangled state; however, in practice, such an ideal state is typically not available and one can instead only realize an approximate teleportation. With this in mind, we present a method to quantify the performance of approximate teleportation when using an arbitrary resource state. More specifically, after framing the task of approximate teleportation as an optimization of a simulation error over one-way local operations and classical communication (LOCC) channels, we establish a semi-definite relaxation of this optimization task by instead optimizing over the larger set of two-PPT-extendible channels. The main analytical calculations in our paper consist of exploiting the unitary covariance symmetry of the identity channel to establish a significant reduction of the computational cost of this latter optimization. Next, by exploiting known connections between approximate teleportation and quantum error correction, we also apply these concepts to establish bounds on the performance of approximate quantum error correction over a given quantum channel. Finally, we evaluate our bounds for various examples of resource states and channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源