论文标题

通过显式椭圆曲线研究希尔伯特的第十个问题

Studying Hilbert's 10th problem via explicit elliptic curves

论文作者

Kundu, Debanjana, Lei, Antonio, Sprung, Florian

论文摘要

N.García-Fritz和H.Pasten表明,希尔伯特的第10个问题在数字字段的整数中无法解决,$ \ mathbb {q}(\ sqrt [3] {p},\ sqrt {-q})$ for Prime of Primes $ p $ P $ P $ $ P $。我们提高了它们的比例,并将其结果扩展到表单$ \ Mathbb {q}(\ sqrt [3] {p},\ sqrt {dq})$的数字字段的情况,其中$ d $属于一个明确的无正方形整体家族。我们通过使用多个椭圆形曲线来实现这一目标,并通过更直接的方法替换其Iwasawa理论论点。

N.García-Fritz and H.Pasten showed that Hilbert's 10th problem is unsolvable in the ring of integers of number fields of the form $\mathbb{Q}(\sqrt[3]{p},\sqrt{-q})$ for positive proportions of primes $p$ and $q$. We improve their proportions and extend their results to the case of number fields of the form $\mathbb{Q}(\sqrt[3]{p},\sqrt{Dq})$, where $D$ belongs to an explicit family of positive square-free integers. We achieve this by using multiple elliptic curves, and replace their Iwasawa theory arguments by a more direct method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源