论文标题

通过小波分析蛋白质质谱来早期检测卵巢癌

Early Detection of Ovarian Cancer by Wavelet Analysis of Protein Mass Spectra

论文作者

Vimalajeewa, Dixon, Bruce, Scott Alan, Vidakovic, Brani

论文摘要

早期对卵巢癌的准确检测对于确保对患者的适当治疗至关重要。在早期诊断研究中研究的一线方式中,是从蛋白质质谱中提取的特征。但是,该方法仅考虑光谱响应的特定子集,而忽略了蛋白质表达水平之间的相互作用,这也可以包含诊断信息。我们提出了一种新的方式,该模式通过考虑光谱的自相似性,自动搜索蛋白质质谱以获取歧视性特征。通过对蛋白质质谱的小波分解并估计所得小波系数的能量中的水平衰减速率来评估自相似性。使用距离方差以稳健的方式估算水平的能量,并通过滚动窗口方法在本地估算速率。这导致了一系列速率,可用于表征蛋白质之间的相互作用,这可以表明存在癌症。然后从这些进化速率中选择歧视性描述符,并用作分类特征。所提出的基于小波的特征与现有文献中提出的特征一起使用,该特征是使用美国国家癌症研究所(American National Cancer Institute)出版的两个数据集来早期诊断卵巢癌的诊断。包括新模式的基于小波的特征可改善早期卵巢癌检测的诊断性能。这证明了提出的方式表征新的卵巢癌诊断信息的能力。

Accurate and efficient detection of ovarian cancer at early stages is critical to ensure proper treatments for patients. Among the first-line modalities investigated in studies of early diagnosis are features distilled from protein mass spectra. This method, however, considers only a specific subset of spectral responses and ignores the interplay among protein expression levels, which can also contain diagnostic information. We propose a new modality that automatically searches protein mass spectra for discriminatory features by considering the self-similar nature of the spectra. Self-similarity is assessed by taking a wavelet decomposition of protein mass spectra and estimating the rate of level-wise decay in the energies of the resulting wavelet coefficients. Level-wise energies are estimated in a robust manner using distance variance, and rates are estimated locally via a rolling window approach. This results in a collection of rates that can be used to characterize the interplay among proteins, which can be indicative of cancer presence. Discriminatory descriptors are then selected from these evolutionary rates and used as classifying features. The proposed wavelet-based features are used in conjunction with features proposed in the existing literature for early stage diagnosis of ovarian cancer using two datasets published by the American National Cancer Institute. Including the wavelet-based features from the new modality results in improvements in diagnostic performance for early-stage ovarian cancer detection. This demonstrates the ability of the proposed modality to characterize new ovarian cancer diagnostic information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源