论文标题

机器学习以产生头颈癌辐射疗法中的可调节剂量分布

Machine Learning to Generate Adjustable Dose Distributions in Head-and-Neck Cancer Radiation Therapy

论文作者

Hajinezhad, Davood, Oroojlooy, Afshin, Nazari, Mohammadreza, Hunt, Xin, Silva, Jorge, Shen, Colette, Chera, Bhisham, Das, Shiva K.

论文摘要

在这项工作中,我们提出了一种机器学习模型,该模型为外部束辐射疗法生成可调节的3D剂量分布,用于头颈癌治疗。与提供单个模型的现有机器学习方法相反,我们为每种有机风险的型号(即低超级型和上极端模型)创建了一对模型。这些模型对有机风险的模型提出的剂量提出了剂量,该剂量会给该风险的风险带来较低和更高的剂量,同时还将剂量折衷的剂量封装在其他风险中。通过加权和组合所有风险器官的模型对,我们能够动态创建可调节的剂量分布,可以实时使用,以在危险之间移动剂量,从而将剂量分布定制为特定患者的需求。我们利用一个关键的观察,即培训数据集固有地包含临床权衡。我们表明,可调节的分布能够在危险之间的剂量的权衡中提供合理的临床剂量纬度。

In this work, we propose a Machine Learning model that generates an adjustable 3D dose distribution for external beam radiation therapy for head-and-neck cancer treatments. In contrast to existing Machine Learning methods that provide a single model, we create pairs of models for each organ-at-risk, namely lower-extreme and upper-extreme models. These model pairs for an organ-at-risk propose doses that give lower and higher doses to that organ-at-risk, while also encapsulating the dose trade-off to other organs-at-risk. By weighting and combining the model pairs for all organs-at-risk, we are able to dynamically create adjustable dose distributions that can be used, in real-time, to move doses between organs-at-risk, thereby customizing the dose distribution to the needs of a particular patient. We leverage a key observation that the training data set inherently contains the clinical trade-offs. We show that the adjustable distributions are able to provide reasonable clinical dose latitude in the trade-off of doses between organs-at-risk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源