论文标题

MIMO-DOANET:多通道输入和多个输出DOA网络,具有未知数的声源

MIMO-DoAnet: Multi-channel Input and Multiple Outputs DoA Network with Unknown Number of Sound Sources

论文作者

Yin, Haoran, Ge, Meng, Fu, Yanjie, Zhang, Gaoyan, Wang, Longbiao, Zhang, Lei, Qiu, Lin, Dang, Jianwu

论文摘要

最近基于神经网络的到达方向(DOA)估计算法在未知数的声源场景上表现良好。这些算法通常是通过将多通道音频输入映射到单个输出(即所有来源的总空间伪谱(SP))来实现的,称为MISO。但是,这种误语算法在很大程度上取决于经验阈值设置和声音源之间的角度大于固定角度的角度假设。为了解决这些局限性,我们提出了一种新型的多通道输入和多个输出的DOA网络,称为MIMO-DOANET。与一般的误觉算法不同,Mimo-Doanet借助于信息的空间协方差矩阵来预测每个声源的SPS编码。通过这样做,检测声源数量的阈值任务成为检测每个输出中是否存在声源的更容易的任务,并且在推理阶段,声源之间的严重交互消失。实验结果表明,与3,4个来源场景中的莫斯科基线系统相比,MIMO-DOANET的相对相对18.6%和绝对13.3%,相对34.4%和绝对20.2%的F1得分提高。结果还证明了MIMO-DOANET减轻了阈值设置问题,并有效地解决了角度假设问题。

Recent neural network based Direction of Arrival (DoA) estimation algorithms have performed well on unknown number of sound sources scenarios. These algorithms are usually achieved by mapping the multi-channel audio input to the single output (i.e. overall spatial pseudo-spectrum (SPS) of all sources), that is called MISO. However, such MISO algorithms strongly depend on empirical threshold setting and the angle assumption that the angles between the sound sources are greater than a fixed angle. To address these limitations, we propose a novel multi-channel input and multiple outputs DoA network called MIMO-DoAnet. Unlike the general MISO algorithms, MIMO-DoAnet predicts the SPS coding of each sound source with the help of the informative spatial covariance matrix. By doing so, the threshold task of detecting the number of sound sources becomes an easier task of detecting whether there is a sound source in each output, and the serious interaction between sound sources disappears during inference stage. Experimental results show that MIMO-DoAnet achieves relative 18.6% and absolute 13.3%, relative 34.4% and absolute 20.2% F1 score improvement compared with the MISO baseline system in 3, 4 sources scenes. The results also demonstrate MIMO-DoAnet alleviates the threshold setting problem and solves the angle assumption problem effectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源