论文标题
您的美学增强:低光图像的无监督的个性化增强器
Enhancement by Your Aesthetic: An Intelligible Unsupervised Personalized Enhancer for Low-Light Images
论文作者
论文摘要
低光图像增强是一个固有的主观过程,其目标与用户的美学不同。在此激励的情况下,已经研究了几种个性化的增强方法。但是,基于这些技术中用户偏好的增强过程是看不见的,即“黑匣子”。在这项工作中,我们为低光图像提出了一个可理解的无监督个性化增强器(Iupenhancer),该图像建立了与三个用户友好型属性(亮度,色彩,色彩和噪音)有关的弱光与未配对的参考图像之间的相关性。拟议的IUP增强剂接受了这些相关性的指导和相应的无监督损失函数的培训。我们的IUP-Enhancer不是“黑匣子”过程,而是带有上述属性的可理解增强过程。广泛的实验表明,所提出的算法会产生竞争性的定性和定量结果,同时保持出色的灵活性和可伸缩性。可以通过单个/多个参考,交叉归因引用或仅调整参数的个性化来验证。
Low-light image enhancement is an inherently subjective process whose targets vary with the user's aesthetic. Motivated by this, several personalized enhancement methods have been investigated. However, the enhancement process based on user preferences in these techniques is invisible, i.e., a "black box". In this work, we propose an intelligible unsupervised personalized enhancer (iUPEnhancer) for low-light images, which establishes the correlations between the low-light and the unpaired reference images with regard to three user-friendly attributions (brightness, chromaticity, and noise). The proposed iUP-Enhancer is trained with the guidance of these correlations and the corresponding unsupervised loss functions. Rather than a "black box" process, our iUP-Enhancer presents an intelligible enhancement process with the above attributions. Extensive experiments demonstrate that the proposed algorithm produces competitive qualitative and quantitative results while maintaining excellent flexibility and scalability. This can be validated by personalization with single/multiple references, cross-attribution references, or merely adjusting parameters.