论文标题

独立空间,基地和跨度空间的$ q $ -Matroid公理的替代方案

Alternatives for the $q$-matroid axioms of independent spaces, bases, and spanning spaces

论文作者

Ceria, Michela, Jurrius, Relinde

论文摘要

众所周知,在Q-摩托病中,独立空间,基地和跨度空间的公理与经典的矩形情况有所不同,因为经典公理的直接q analogue Q-Analogue不给出Q-MATROID。因此,已经提出了第四个公理。在本文中,我们展示了如何仅使用三个公理来描述这些空间,提供了两种替代方法来做到这一点。作为应用程序,我们显示独立空间和电路之间以及独立空间和基地之间的直接隐态性。

It is well known that in q-matroids, axioms for independent spaces, bases, and spanning spaces differ from the classical case of matroids, since the straightforward q-analogue of the classical axioms does not give a q-matroid. For this reason, a fourth axiom has been proposed. In this paper we show how we can describe these spaces with only three axioms, providing two alternative ways to do that. As an application, we show direct cryptomorphisms between independent spaces and circuits and between independent spaces and bases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源