论文标题

二重奏:通过频域中的频道拆分,协作保护隐私的面部识别

DuetFace: Collaborative Privacy-Preserving Face Recognition via Channel Splitting in the Frequency Domain

论文作者

Mi, Yuxi, Huang, Yuge, Ji, Jiazhen, Liu, Hongquan, Xu, Xingkun, Ding, Shouhong, Zhou, Shuigeng

论文摘要

随着面部识别系统的广泛应用,人们担心原始的面部图像可能会暴露于恶意意图并因此导致个人隐私漏洞。本文介绍了Duetface,这是一种新颖的隐私面部识别方法,该方法采用了频域中的协作推断。从违反直觉的发现开始,即面部识别只能通过视觉上无法区分的高频通道就可以实现出人意料的良好性能,此方法通过其可视化的关键性设计了可信的频道划分,并在非重要通道上操作服务器端模型。但是,由于丢失的视觉信息,该模型在注意面部特征时会降低其对面部特征。为了补偿,该方法引入了插件交互式块,以通过产生功能掩码来从客户端转移注意力。通过得出和覆盖感兴趣的面部区域(ROI),进一步完善了面具。在多个数据集上进行的大量实验验证了所提出的方法在保护面部图像免受不希望的视觉检查,重建和识别的同时保持高任务可用性和性能的有效性。结果表明,所提出的方法实现了对未受保护的弧形的可比识别精度和计算成本,并优于最先进的隐私保护方法。源代码可在https://github.com/tencent/tceent/tree/master/recognition/tasks/duetface上找到。

With the wide application of face recognition systems, there is rising concern that original face images could be exposed to malicious intents and consequently cause personal privacy breaches. This paper presents DuetFace, a novel privacy-preserving face recognition method that employs collaborative inference in the frequency domain. Starting from a counterintuitive discovery that face recognition can achieve surprisingly good performance with only visually indistinguishable high-frequency channels, this method designs a credible split of frequency channels by their cruciality for visualization and operates the server-side model on non-crucial channels. However, the model degrades in its attention to facial features due to the missing visual information. To compensate, the method introduces a plug-in interactive block to allow attention transfer from the client-side by producing a feature mask. The mask is further refined by deriving and overlaying a facial region of interest (ROI). Extensive experiments on multiple datasets validate the effectiveness of the proposed method in protecting face images from undesired visual inspection, reconstruction, and identification while maintaining high task availability and performance. Results show that the proposed method achieves a comparable recognition accuracy and computation cost to the unprotected ArcFace and outperforms the state-of-the-art privacy-preserving methods. The source code is available at https://github.com/Tencent/TFace/tree/master/recognition/tasks/duetface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源