论文标题

通过高阶图推理网络解释可解释的稀疏知识图完成

Explainable Sparse Knowledge Graph Completion via High-order Graph Reasoning Network

论文作者

Chen, Weijian, Cao, Yixin, Feng, Fuli, He, Xiangnan, Zhang, Yongdong

论文摘要

知识图(KGS)在许多应用程序中越来越重要的基础架构,而遭受了不完整问题的困扰。 KG完成任务(KGC)自动根据不完整的kg预测缺失的事实。但是,现有方法在现实情况下不令人满意。一方面,他们的性能将大大降级,因为公里的稀疏性越来越大。另一方面,预测的推理过程是一个不信任的黑匣子。 本文提出了一个稀疏kgc的新型可解释模型,将高阶推理组合到图形卷积网络中,即Hogrn。它不仅可以提高减轻信息不足问题的概括能力,而且还可以在保持模型的有效性和效率的同时提供可解释性。有两个主要组件无缝集成以进行关节优化。首先,高阶推理成分通过捕获关系之间的内源性相关性来学习高质量的关系表示。这可以反映逻辑规则,以证明更广泛的事实是合理的。其次,更新组件的实体利用无重量的图形卷积网络(GCN)有效地对kg结构进行了解释性建模。与常规方法不同,我们在没有其他参数的情况下在关系空间中进行实体聚集和基于设计组成的注意。轻巧的设计使HoGRN更适合稀疏设置。为了进行评估,我们进行了广泛的实验 - HOGRN对几个稀疏KG的结果,其令人印象深刻的改善(平均为9%的MRR增益)。进一步的消融和案例研究证明了主要组成部分的有效性。我们的代码将在接受后发布。

Knowledge Graphs (KGs) are becoming increasingly essential infrastructures in many applications while suffering from incompleteness issues. The KG completion task (KGC) automatically predicts missing facts based on an incomplete KG. However, existing methods perform unsatisfactorily in real-world scenarios. On the one hand, their performance will dramatically degrade along with the increasing sparsity of KGs. On the other hand, the inference procedure for prediction is an untrustworthy black box. This paper proposes a novel explainable model for sparse KGC, compositing high-order reasoning into a graph convolutional network, namely HoGRN. It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability while maintaining the model's effectiveness and efficiency. There are two main components that are seamlessly integrated for joint optimization. First, the high-order reasoning component learns high-quality relation representations by capturing endogenous correlation among relations. This can reflect logical rules to justify a broader of missing facts. Second, the entity updating component leverages a weight-free Graph Convolutional Network (GCN) to efficiently model KG structures with interpretability. Unlike conventional methods, we conduct entity aggregation and design composition-based attention in the relational space without additional parameters. The lightweight design makes HoGRN better suitable for sparse settings. For evaluation, we have conducted extensive experiments-the results of HoGRN on several sparse KGs present impressive improvements (9% MRR gain on average). Further ablation and case studies demonstrate the effectiveness of the main components. Our codes will be released upon acceptance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源