论文标题

通过重定向步行

Short-Term Trajectory Prediction for Full-Immersive Multiuser Virtual Reality with Redirected Walking

论文作者

Lemic, Filip, Struye, Jakob, Famaey, Jeroen

论文摘要

全型多用途虚拟现实(VR)设想了在虚拟世界中支持用户不受限制的移动性,同时通过重定向步行来限制VR设置中的物理运动。为了实时传递高数据速率视频内容,支持无线网络将利用高度定向的通信链接,这些链接将“跟踪”用户维护视线(LOS)连接。复发性神经网络(RNN),尤其是长期的短期记忆(LSTM)网络历史上已成为自然人类机动性的近期运动轨迹预测的合适候选者,最近也适用于预测VR用户在重新进行步行的约束下的移动性。在这项工作中,我们通过表明RNN家族的另一位候选人的封闭式复发单元(GRU)网络扩展了这些初步发现,通常比传统上使用的LSTM胜过。其次,我们表明,如果将虚拟世界的上下文与更传统的VR用户的历史物理运动相比,虚拟世界的上下文可以提高预测的准确性。最后,我们表明,对静态数量的共存VR用户进行培训的预测系统将缩放到多用户系统,而不会出现明显的准确性降低。

Full-immersive multiuser Virtual Reality (VR) envisions supporting unconstrained mobility of the users in the virtual worlds, while at the same time constraining their physical movements inside VR setups through redirected walking. For enabling delivery of high data rate video content in real-time, the supporting wireless networks will leverage highly directional communication links that will "track" the users for maintaining the Line-of-Sight (LoS) connectivity. Recurrent Neural Networks (RNNs) and in particular Long Short-Term Memory (LSTM) networks have historically presented themselves as a suitable candidate for near-term movement trajectory prediction for natural human mobility, and have also recently been shown as applicable in predicting VR users' mobility under the constraints of redirected walking. In this work, we extend these initial findings by showing that Gated Recurrent Unit (GRU) networks, another candidate from the RNN family, generally outperform the traditionally utilized LSTMs. Second, we show that context from a virtual world can enhance the accuracy of the prediction if used as an additional input feature in comparison to the more traditional utilization of solely the historical physical movements of the VR users. Finally, we show that the prediction system trained on a static number of coexisting VR users be scaled to a multi-user system without significant accuracy degradation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源