论文标题

选择您的邻居:当地的高斯 - 山区规则,以进行快速异步分散的优化

Pick your Neighbor: Local Gauss-Southwell Rule for Fast Asynchronous Decentralized Optimization

论文作者

Costantini, Marina, Liakopoulos, Nikolaos, Mertikopoulos, Panayotis, Spyropoulos, Thrasyvoulos

论文摘要

在分散的优化环境中,$ n $节点网络中的每个代理$ i $都有其自己的私人功能$ f_i $,而节点与邻居进行通信,以合作最大程度地减少汇总目标$ \ sum_ {i = 1}^n f_i $。在这种情况下,同步节点的更新会影响大量的沟通开销和计算成本,因此,最近的许多文献都集中在异步优化算法的分析和设计上,在这种情况下,代理在任意时间激活和交流而无需使用全局同步执行器。但是,大多数作品都假设,当节点激活时,它会根据固定概率选择邻居来接触(例如,随机均匀地),这种选择忽略了在激活时忽略优化景观。取而代之的是,在这项工作中,我们引入了一项优化感知的选择规则,该规则选择了提供最高双重成本提高的邻居(基于共识的问题的数量与问题的双重化有关)。该方案与用于坐标更新的高斯 - 南威尔(GS)规则的坐标下降(CD)方法有关;但是,在我们的环境中,在每次迭代时只能访问一部分坐标(因为每个节点只能与邻居进行通信),因此不适用有关GS方法的现有文献。为了克服这一困难,我们为平稳且强烈凸出的新分析框架开发了涵盖设定的CD算法类别的类别,该类别直接适用于分散的场景,但不限于它们 - 我们证明了拟议的GS规则可为网络的最高范围($ shop)($ shop)的最高范围($)($ shop)($)的最大值($)($ shore)($)($我们的分析预测的加速度在具有合成数据的数值实验中得到了验证。

In decentralized optimization environments, each agent $i$ in a network of $n$ nodes has its own private function $f_i$, and nodes communicate with their neighbors to cooperatively minimize the aggregate objective $\sum_{i=1}^n f_i$. In this setting, synchronizing the nodes' updates incurs significant communication overhead and computational costs, so much of the recent literature has focused on the analysis and design of asynchronous optimization algorithms, where agents activate and communicate at arbitrary times without needing a global synchronization enforcer. However, most works assume that when a node activates, it selects the neighbor to contact based on a fixed probability (e.g., uniformly at random), a choice that ignores the optimization landscape at the moment of activation. Instead, in this work we introduce an optimization-aware selection rule that chooses the neighbor providing the highest dual cost improvement (a quantity related to a dualization of the problem based on consensus). This scheme is related to the coordinate descent (CD) method with the Gauss-Southwell (GS) rule for coordinate updates; in our setting however, only a subset of coordinates is accessible at each iteration (because each node can communicate only with its neighbors), so the existing literature on GS methods does not apply. To overcome this difficulty, we develop a new analytical framework for smooth and strongly convex $f_i$ that covers the class of set-wise CD algorithms -- a class that directly applies to decentralized scenarios, but is not limited to them -- and we show that the proposed set-wise GS rule achieves a speedup factor of up to the maximum degree in the network (which is in the order of $Θ(n)$ for highly connected graphs). The speedup predicted by our analysis is validated in numerical experiments with synthetic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源