论文标题

通过分层签名图池模型对比对比大脑网络学习

Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model

论文作者

Tang, Haoteng, Ma, Guixiang, Guo, Lei, Fu, Xiyao, Huang, Heng, Zhang, Liang

论文摘要

最近,大脑网络已被广泛采用来研究大脑动力学,脑发育和脑部疾病。大脑功能网络上的图表学习技术可以促进发现用于临床表型和神经退行性疾病的新型生物标志物。但是,当前的图形学习技术在大脑网络挖掘上存在几个问题。首先,大多数当前的图形学习模型都是为无符号图设计的,这阻碍了对许多签名网络数据(例如大脑功能网络)的分析。同时,大脑网络数据的不足限制了临床表型预测的模型性能。此外,当前很少有图形学习模型是可以解释的,这可能无法为模型结果提供生物学见解。在这里,我们提出了一个可解释的层次签名的图表学习模型,以从大脑功能网络中提取图形表示,可用于不同的预测任务。为了进一步提高模型性能,我们还提出了一种新的策略,以增强功能性脑网络数据以进行对比学习。我们使用HCP和OASIS的数据在不同的分类和回归任务上评估了此框架。我们来自广泛的实验的结果表明,与几种最新技术相比,提出的模型的优越性。此外,我们使用从这些预测任务得出的图形显着图图来证明表型生物标志物的检测和解释。

Recently brain networks have been widely adopted to study brain dynamics, brain development and brain diseases. Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. However, current graph learning techniques have several issues on brain network mining. Firstly, most current graph learning models are designed for unsigned graph, which hinders the analysis of many signed network data (e.g., brain functional networks). Meanwhile, the insufficiency of brain network data limits the model performance on clinical phenotypes predictions. Moreover, few of current graph learning model is interpretable, which may not be capable to provide biological insights for model outcomes. Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks, which can be used for different prediction tasks. In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning. We evaluate this framework on different classification and regression tasks using the data from HCP and OASIS. Our results from extensive experiments demonstrate the superiority of the proposed model compared to several state-of-the-art techniques. Additionally, we use graph saliency maps, derived from these prediction tasks, to demonstrate detection and interpretation of phenotypic biomarkers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源