论文标题
超过八度可调节的Terahertz波,并带有Zepto-Second级的时机噪声
Exceeding octave tunable Terahertz waves with zepto-second level timing noise
论文作者
论文摘要
任何毫米波(MMW)源的光谱纯度在低噪声应用中最引起了最大的兴趣。通过摄影的光学合成是此类MMW的有吸引力的来源,该MMW通常涉及昂贵的光谱纯激光器,其线宽狭窄,由于其固有的制造成本或规格而接近单色。在这里,我们通过自我注射锁定技术通过相应的STOKES波从纤维Brillouin腔体中的相应的STOKES波进行了自我注射锁定技术,以提高廉价半导体二极管激光器的频谱纯度,从而提高了廉价的半导体二极管激光器的频谱纯度,从而表现出极大的改进相位噪声水平和〜1.8 nm的波长可调性。我们在一个旨在在MMW和THZ区域的差异频率产生的普通Brillouin空腔上实现了一个带有两个自注射二极管激光器的系统。我们通过在Uni-travelling载流子光电二极管上击败自注射的两个波长Stokes灯并表征噪声性能,从而生成可调的子MMW(0.3和0.5 THz)波。次级MMW具有Zepto-Second(ZS.Hz^-0.5)中微小的时序噪声水平,其表现优于最先进的基于Kerr Soliton基于Kerr Soliton的微谐波设置,同时提供更广泛的频率可调性。这些结果表明,可行的廉价替代方法是针对具有实验室规模足迹和机架安装的可移植性的低噪声应用程序的可行廉价替代方案,同时为芯片尺度的光子集成铺平了道路。
Spectral purity of any millimeter wave (mmW) source is of the utmost interest in low-noise applications. Optical synthesis via photomixing is an attractive source for such mmWs, which usually involves expensive spectrally pure lasers with narrow linewidths approaching monochromaticity due to their inherent fabrication costs or specifications. Here, we report an alternative option for enhancing the spectral purity of inexpensive semiconductor diode lasers via a self-injection locking technique through corresponding Stokes waves from a fiber Brillouin cavity exhibiting greatly improved phase noise levels and large wavelength tunability of ~1.8 nm. We implement a system with two self-injected diode lasers on a common Brillouin cavity aimed at difference frequency generation in the mmW and THz region. We generate tunable sub-mmW (0.3 and 0.5 THz) waves by beating the self-injected two wavelength Stokes light on a uni-travelling carrier photodiode and characterize the noise performance. The sub-mmW features miniscule timing noise levels in the zepto-second (zs.Hz^-0.5) scale outperforming the state of the art dissipative Kerr soliton based micro-resonator setups while offering broader frequency tunability. These results suggest a viable inexpensive alternative for mmW sources aimed at low-noise applications featuring lab-scale footprints and rack-mounted portability while paving the way for chip-scale photonic integration.