论文标题

兼容的Feigin-odesskii泊松支架

Compatible Feigin-Odesskii Poisson brackets

论文作者

Markarian, Nikita, Polishchuk, Alexander

论文摘要

我们证明,与普通椭圆曲线相关的几个Feigin-odesskii Poisson托架在$ {\ Mathbb p}^n $中是兼容的,并且仅当它们包含在卷轴上或在$ {\ mathbb p}^5 $中的Veronese表面中,而$ {\ Mathbb p}^5 $(与$ n = 3 $的例外)。在情况下,$ n = 3 $,我们确定与与普通椭圆曲线相关的两个(不兼容)泊松支架的Schouten括号对应的四分位数。

We prove that several Feigin-Odesskii Poisson brackets associated with normal elliptic curves in ${\mathbb P}^n$ are compatible if and only if they are contained in a scroll or in a Veronese surface in ${\mathbb P}^5$ (with an exception of one case when $n=3$). In the case $n=3$ we determine the quartic corresponding to the Schouten bracket of two (non-compatible) Poisson brackets associated with normal elliptic curves $E_1$ and $E_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源