论文标题
RCRN:通过骨架提取的现实世界角色图像恢复网络
RCRN: Real-world Character Image Restoration Network via Skeleton Extraction
论文作者
论文摘要
构建高质量的角色图像数据集很具有挑战性,因为现实世界图像通常会受图像降解的影响。将当前图像恢复方法应用于此类现实世界字符图像时存在局限性,因为(i)字符图像中的噪声类别与一般图像中的噪声类别不同; (ii)现实世界字符图像通常包含更复杂的图像降解,例如不同噪声水平的混合噪声。为了解决这些问题,我们提出了一个现实世界的角色恢复网络(RCRN),以有效恢复降级的角色图像,其中使用字符骨架信息和比例安装特征提取来获得更好的恢复性能。所提出的方法由骨架提取器(SENET)和字符图像修复器(CIRNET)组成。 Senet旨在保持角色的结构一致性并使复杂的噪声正常化。然后,Cirnet从降级的角色图像及其骨骼中重建了清洁图像。由于缺乏现实世界字符图像恢复的基准测试,我们构建了一个数据集,其中包含1,606个字符图像,具有现实世界中的降级,以评估所提出方法的有效性。实验结果表明,RCRN在定量和质量上优于最先进的方法。
Constructing high-quality character image datasets is challenging because real-world images are often affected by image degradation. There are limitations when applying current image restoration methods to such real-world character images, since (i) the categories of noise in character images are different from those in general images; (ii) real-world character images usually contain more complex image degradation, e.g., mixed noise at different noise levels. To address these problems, we propose a real-world character restoration network (RCRN) to effectively restore degraded character images, where character skeleton information and scale-ensemble feature extraction are utilized to obtain better restoration performance. The proposed method consists of a skeleton extractor (SENet) and a character image restorer (CiRNet). SENet aims to preserve the structural consistency of the character and normalize complex noise. Then, CiRNet reconstructs clean images from degraded character images and their skeletons. Due to the lack of benchmarks for real-world character image restoration, we constructed a dataset containing 1,606 character images with real-world degradation to evaluate the validity of the proposed method. The experimental results demonstrate that RCRN outperforms state-of-the-art methods quantitatively and qualitatively.