论文标题

关于有限的西顿套装的大小

On the size of finite Sidon sets

论文作者

O'Bryant, Kevin

论文摘要

Sidon集是一组整数,其中不包含公式$ a+b = c+d $的非平凡解决方案。我们改进了带有$ k $元素的Sidon套件直径的下限:如果$ k $足够大,$ {\ cal a} $是带有$ k $元素的Sidon套件,则$ k $元素,然后$ diam({\ cal a})\ ge k^2-1.99405 k^{3/2 {3/2/2} $。另外,如果$ n $足够大,则是$ \ {1,2,\ dots,n \} $的最大子集(Sidon set,最多具有$ n^{1/2} +0.99703 n^n^n^{1/4} $。尽管这些仅在Balogh-Füredi-Roy(Arxiv:2103:15850V2)上进行了略有数值改进,但我们使用一种在逻辑上更简单的方法。

A Sidon set is a set of integers containing no nontrivial solutions to the equation $a+b=c+d$. We improve on the lower bound on the diameter of a Sidon set with $k$ elements: if $k$ is sufficiently large and ${\cal A}$ is a Sidon set with $k$ elements, then $diam({\cal A})\ge k^2-1.99405 k^{3/2}$. Alternatively, if $n$ is sufficiently large, then the largest subset of $\{1,2,\dots,n\}$ that is a Sidon set has cardinality at most $n^{1/2}+0.99703 n^{1/4}$. While these are only slight numerical improvements on Balogh-Füredi-Roy (arXiv:2103:15850v2), we use a method that is logically simpler.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源