论文标题
使用周期性分流电路可调羊肉的压电分代材料
Tunable piezoelectric metamaterial for Lamb waves using periodic shunted circuits
论文作者
论文摘要
压电弹性超材料提供了克服被动弹性超材料的固定狭窄带宽特征的能力。在压电板超材料中存在有趣的超声带隙,并具有与分流电路相连的周期电极。这些带隙是由避免在电气带和机械带之间的交叉所产生的,并且可能以低于Bloch波带间隙的频率出现。这些系统的当前分析建模技术在数值上很麻烦,并假设一个无限周期性的板。我们提出了一个近似的二维分析模型,该模型可用于直接计算有限长度板的散射系数。该模型被证明可以预测一个与从有限元分析(FEA)获得的图相比的频带图。发现板隙位置的估计值低于10%的差异,其板厚度为$ 2 $毫米,电极宽度为$ 1 $毫米,电极之间的隙大于$ 1.2 $毫米。我们计算了来自全局散射系数的有效阻抗和有效的波数。 The calculated effective normalized wavenumber swings from positive values ($0<k_{\mathrm{eff}}\leq 1$) to negative values ($0>k_{\mathrm{eff}}\geq -1$) at the low-frequency band gap, resembling wavenumbers for negative stiffness Helmholtz resonator metamaterials.这为周期性分流电路压电板提供了新的视角,作为可调的,负刚度超材料类似于Helmholtz谐振器衬里的声学波导。
Piezoelectric elastic metamaterials offer the ability to overcome the fixed, narrow bandwidth characteristics of passive elastic metamaterials. Interesting ultrasonic band gaps exist in piezoelectric plate metamaterials with periodic electrodes connected to shunted circuits. These band gaps result from an avoided crossing between electrical and mechanical bands, and can arise at lower frequencies than Bloch wave band gaps. Current analytical modeling techniques for these systems are numerically cumbersome, and assume an infinitely periodic plate. We present an approximate two-dimensional analytical model that can be used to directly calculate scattering coefficients for finite length plates. This model is shown to predict a band diagram that compares well with diagrams obtained from finite element analysis (FEA). Lower than 10% difference in the estimation of the location of the band gap was found for a plate thickness of $2$ mm, electrode width of $1$ mm, and gap between electrodes greater than $1.2$ mm. We calculate effective impedances and effective wavenumbers from global scattering coefficients. The calculated effective normalized wavenumber swings from positive values ($0<k_{\mathrm{eff}}\leq 1$) to negative values ($0>k_{\mathrm{eff}}\geq -1$) at the low-frequency band gap, resembling wavenumbers for negative stiffness Helmholtz resonator metamaterials. This presents a new perspective on periodic shunted circuit piezoelectric plates as electrically tunable, negative stiffness metamaterials analogous to Helmholtz resonator lined acoustic waveguides.