论文标题

MDM:用于视觉解释神经网络的多个动态面具

MDM: Multiple Dynamic Masks for Visual Explanation of Neural Networks

论文作者

Peng, Yitao, Yang, Longzhen, Liu, Yihang, He, Lianghua

论文摘要

神经网络的类激活图(CAM)查找告诉我们在决定时神经网络的重点是哪些区域。过去,CAM搜索方法取决于网络的特定内部模块。它对神经网络的结构有特定的限制。搜索凸轮具有一般性和高性能。我们提出了一种基于学习的算法,即多个动态面具(MDM)。它是基于公共认知,即仅与分类有关的图片的主动特征会影响神经网络的分类结果,而其他功能几乎不会影响网络的分类结果。 MDM产生的面具符合上述认知。它通过约束掩码值和激活一致性来训练不同大小的掩模向量,然后使用不同尺度的堆叠掩码来生成可以平衡空间信息和语义信息的CAM。将MDM的结果与最近的高级CAM搜索方法的结果进行比较,MDM的性能已达到最先进的结果。我们将MDM方法应用于可解释的神经网络Protopnet和Xprotonet,从而改善了模型在可解释的原型搜索中的性能。最后,我们可以看到MDM对不同体系结构神经网络的CAM生成效应,从而验证了MDM方法的一般性。

The Class Activation Map (CAM) lookup of a neural network tells us to which regions the neural network focuses when it makes a decision. In the past, the CAM search method was dependent upon a specific internal module of the network. It has specific constraints on the structure of the neural network. To make the search of CAM have generality and high performance. We propose a learning-based algorithm, namely Multiple Dynamic Masks (MDM). It is based on a public cognition that only active features of a picture related to classification will affect the classification results of the neural network, and other features will hardly affect the classification results of the network. The mask generated by MDM conforms to the above cognition. It trains mask vectors of different sizes by constraining mask values and activating consistency, then it uses stacking masks of different scale to generate CAM that can balance spatial information and semantic information. Comparing the results of MDM with those of the recent advanced CAM search method, the performance of MDM has reached the state of the art results. We applied the MDM method to the interpretable neural networks ProtoPNet and XProtoNet, which improved the performance of model in the explainable prototype search. Finally, we visualized the CAM generation effect of MDM on neural networks of different architectures, verifying the generality of the MDM method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源