论文标题

基于方面的情感分析的特定于方面的上下文建模

Aspect-specific Context Modeling for Aspect-based Sentiment Analysis

论文作者

Ma, Fang, Zhang, Chen, Zhang, Bo, Song, Dawei

论文摘要

基于方面的情感分析(ABSA)旨在预测对给定方面表达的情感极性(SC)或提取意见跨度(OE)。 ABSA的先前工作主要依赖于相当复杂的特定方面特征诱导。最近,审计的语言模型(PLM),例如伯特(Bert)已被用作上下文建模层,以简化特征感应结构并实现最新性能。但是,这种基于PLM的上下文建模可能不是特定于方面的。因此,一个关键问题的探索还不足:如何更好地通过PLM对特定方面的上下文进行建模?为了回答这个问题,我们试图以非侵入性的方式通过PLM增强特定方面的上下文建模。我们提出了三个特定于方面的输入转换,即伴侣,方面提示和方面标记。通过这些转变,可以实现非侵入性方面的PLM,以促进PLM,以更多地关注句子中特定方面的环境。此外,我们为ABSA(ADVABSA)制定了对抗性基准,以查看特定方面的建模如何影响模型的鲁棒性。对SC和OE的标准和对抗性基准的广泛实验结果证明了该方法的有效性和鲁棒性,从而在OE上产生了新的最新性能和SC上的竞争性能。

Aspect-based sentiment analysis (ABSA) aims at predicting sentiment polarity (SC) or extracting opinion span (OE) expressed towards a given aspect. Previous work in ABSA mostly relies on rather complicated aspect-specific feature induction. Recently, pretrained language models (PLMs), e.g., BERT, have been used as context modeling layers to simplify the feature induction structures and achieve state-of-the-art performance. However, such PLM-based context modeling can be not that aspect-specific. Therefore, a key question is left under-explored: how the aspect-specific context can be better modeled through PLMs? To answer the question, we attempt to enhance aspect-specific context modeling with PLM in a non-intrusive manner. We propose three aspect-specific input transformations, namely aspect companion, aspect prompt, and aspect marker. Informed by these transformations, non-intrusive aspect-specific PLMs can be achieved to promote the PLM to pay more attention to the aspect-specific context in a sentence. Additionally, we craft an adversarial benchmark for ABSA (advABSA) to see how aspect-specific modeling can impact model robustness. Extensive experimental results on standard and adversarial benchmarks for SC and OE demonstrate the effectiveness and robustness of the proposed method, yielding new state-of-the-art performance on OE and competitive performance on SC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源