论文标题

使用网络上的基于代理的模拟改善烟草社会传染模型

Improving tobacco social contagion models using agent-based simulations on networks

论文作者

Prabhakaran, Adarsh, Restocchi, Valerio, Goddard, Benjamin D.

论文摘要

多年来,人口级的烟草控制政策在全球范围内的吸烟率大大降低。但是,吸烟流行率的降低速度正在减慢。因此,需要模型来捕捉吸烟流行的全部复杂性。然后,这些模型可以用作测试床,以制定新的政策以限制吸烟的传播。当前的吸烟动力学模型主要使用普通的微分方程(ODE)模型,其中研究个人接触网络的效果具有挑战性。他们还没有考虑个体之间的所有互动,这些相互作用可能导致吸烟行为的变化,这意味着他们不考虑有关吸烟行为传播的宝贵信息。 在这种情况下,我们开发了一个基于代理的模型(ABM),校准,然后根据在美国和英国观察到的历史趋势进行验证。我们的ABM考虑了自发的术语,代理之间的相互作用和代理商的联系网络。为了探索基础网络对吸烟动态的影响,我们在六个不同的网络和现实世界中测试了ABM。另外,我们还将ABM与ODE模型进行比较。我们的结果表明,仅当网络结构完全连接时,ODE模型的动力学与ABM相似(FC)。 FC网络在复制数据中的经验趋势方面的表现较差,而现实世界网络在六个网络中最能复制它。此外,当无法使用现实世界网络上的信息时,我们在Lancichinetti-Fortunato-Radicchi基准网络(或具有与现实世界网络相似的平均程度)网络上的ABM可用于建模吸烟行为。这些结果表明,网络对于对吸烟行为进行建模至关重要,我们的ABM可用于制定基于网络的干预策略和烟草控制政策。

Over the years, population-level tobacco control policies have considerably reduced smoking prevalence worldwide. However, the rate of decline of smoking prevalence is slowing down. Therefore, there is a need for models that capture the full complexity of the smoking epidemic. These models can then be used as test-beds to develop new policies to limit the spread of smoking. Current models of smoking dynamics mainly use ordinary differential equation (ODE) models, where studying the effect of an individual's contact network is challenging. They also do not consider all the interactions between individuals that can lead to changes in smoking behaviour, implying that they do not consider valuable information on the spread of smoking behaviour. In this context, we develop an agent-based model (ABM), calibrate and then validate it on historical trends observed in the US and UK. Our ABM considers spontaneous terms, interactions between agents, and the agent's contact network. To explore the effect of the underlying network on smoking dynamics, we test the ABM on six different networks, both synthetic and real-world. In addition, we also compare the ABM with an ODE model. Our results suggest that the dynamics from the ODE model are similar to the ABM only when the network structure is fully connected (FC). The FC network performs poorly in replicating the empirical trends in the data, while the real-world network best replicates it amongst the six networks. Further, when information on the real-world network is unavailable, our ABM on Lancichinetti-Fortunato-Radicchi benchmark networks (or networks with a similar average degree as the real-world network) can be used to model smoking behaviour. These results suggest that networks are essential for modelling smoking behaviour and that our ABM can be used to develop network-based intervention strategies and policies for tobacco control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源