论文标题
马尔可夫链的重要性
The Importance Markov Chain
论文作者
论文摘要
Markov链的重要性是一种新型算法,弥合了拒绝采样和重要性采样之间的差距,并通过调谐参数从一个转移到另一个。基于针对仪器分布的仪器马尔可夫链的修改样本(通常是通过MCMC内核),Markov链产生了扩展的马尔可夫链,其中第一个组件的边际分布会收敛到目标分布。例如,当靶向多模式分布时,可以选择仪器分布作为目标的钢化版本,该版本允许该算法更有效地探索其模式。在仪器内核的轻度假设下,我们获得了大数字和中心限制定理的定律和中心限制定理以及几何形状的成绩。在计算上,该算法易于实现,并且可以使用先前存在的库来从仪器分布中进行采样。
The Importance Markov chain is a novel algorithm bridging the gap between rejection sampling and importance sampling, moving from one to the other through a tuning parameter. Based on a modified sample of an instrumental Markov chain targeting an instrumental distribution (typically via a MCMC kernel), the Importance Markov chain produces an extended Markov chain where the marginal distribution of the first component converges to the target distribution. For example, when targeting a multimodal distribution, the instrumental distribution can be chosen as a tempered version of the target which allows the algorithm to explore its modes more efficiently. We obtain a Law of Large Numbers and a Central Limit Theorem as well as geometric ergodicity for this extended kernel under mild assumptions on the instrumental kernel. Computationally, the algorithm is easy to implement and preexisting libraries can be used to sample from the instrumental distribution.