论文标题

非参数神经自适应形成控制

Non-Parametric Neuro-Adaptive Formation Control

论文作者

Verginis, Christos K., Xu, Zhe, Topcu, Ufuk

论文摘要

我们开发了一种基于学习的算法,用于由未知的非线性动力学控制的网络多机构系统的分布式形成控制。大多数现有的算法要么假设未知动态术语的某些参数形式,要么诉诸于不必要的大控制输入以提供理论保证。所提出的算法通过将基于神经网络的学习与自适应控制在两步过程中整合在一起,从而避免了这些弊端。在算法的第一步中,每个代理都使用与编队任务和代理参数集合相对应的训练数据来学习以神经网络表示的控制器。这些参数和任务是通过改变名义代理参数和分别要实现的用户定义的形式任务来得出的。在算法的第二步中,每个代理都将训练有素的神经网络纳入在线和自适应控制策略中,以使多代理闭环系统的行为满足用户定义的形式任务。在每个代理商仅使用其相邻代理的本地信息计算自己的动作的意义上,学习阶段和自适应控制策略都均分布。所提出的算法不使用有关代理未知的动态术语或任何近似方案的任何先验信息。我们为成立任务提供正式的理论保证。

We develop a learning-based algorithm for the distributed formation control of networked multi-agent systems governed by unknown, nonlinear dynamics. Most existing algorithms either assume certain parametric forms for the unknown dynamic terms or resort to unnecessarily large control inputs in order to provide theoretical guarantees. The proposed algorithm avoids these drawbacks by integrating neural network-based learning with adaptive control in a two-step procedure. In the first step of the algorithm, each agent learns a controller, represented as a neural network, using training data that correspond to a collection of formation tasks and agent parameters. These parameters and tasks are derived by varying the nominal agent parameters and a user-defined formation task to be achieved, respectively. In the second step of the algorithm, each agent incorporates the trained neural network into an online and adaptive control policy in such a way that the behavior of the multi-agent closed-loop system satisfies the user-defined formation task. Both the learning phase and the adaptive control policy are distributed, in the sense that each agent computes its own actions using only local information from its neighboring agents. The proposed algorithm does not use any a priori information on the agents' unknown dynamic terms or any approximation schemes. We provide formal theoretical guarantees on the achievement of the formation task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源