论文标题
朝向张量分解的可编程内存控制器
Towards Programmable Memory Controller for Tensor Decomposition
论文作者
论文摘要
张量分解已成为许多数据科学应用中的重要工具。稀疏的进型张量时间Khatri-Rao产品(MTTKRP)是张量分解算法中的关键核,可将高阶现实世界大张量分解为多个矩阵。加速MTTKRP可以极大地加速张量分解过程。由于其不规则的内存访问特性,稀疏的MTTKRP是一个充满挑战的内核。由于能源效率和FPGA的固有平行性,在诸如MTTKRP等内核的现场可编程门阵列(FPGA)上实现加速器。本文探讨了在MTTKRP上设计自定义内存控制器的机会,关键挑战和方法,同时探索了这种自定义内存控制器的参数空间。
Tensor decomposition has become an essential tool in many data science applications. Sparse Matricized Tensor Times Khatri-Rao Product (MTTKRP) is the pivotal kernel in tensor decomposition algorithms that decompose higher-order real-world large tensors into multiple matrices. Accelerating MTTKRP can speed up the tensor decomposition process immensely. Sparse MTTKRP is a challenging kernel to accelerate due to its irregular memory access characteristics. Implementing accelerators on Field Programmable Gate Array (FPGA) for kernels such as MTTKRP is attractive due to the energy efficiency and the inherent parallelism of FPGA. This paper explores the opportunities, key challenges, and an approach for designing a custom memory controller on FPGA for MTTKRP while exploring the parameter space of such a custom memory controller.