论文标题

检查员:基于像素的自动化游戏测试通过探索,检测和调查

Inspector: Pixel-Based Automated Game Testing via Exploration, Detection, and Investigation

论文作者

Liu, Guoqing, Cai, Mengzhang, Zhao, Li, Qin, Tao, Brown, Adrian, Bischoff, Jimmy, Liu, Tie-Yan

论文摘要

深度增强学习(DRL)在自动游戏测试中引起了很多关注。早期尝试依靠游戏内部信息进行游戏空间探索,因此需要与游戏深入集成,这对于实际应用来说是不便的。在这项工作中,我们建议仅使用屏幕截图/像素作为自动游戏测试的输入,并建立一般游戏测试代理Inspector,可以轻松地将其应用于不同的游戏,而无需与游戏深入集成。除了覆盖所有游戏测试空间外,我们的代理商还试图采取类似人类的行为与游戏中的关键对象进行交互,因为某些错误通常发生在玩家对象的交互中。 Inspector基于纯粹的像素输入,包括三个关键模块:游戏空间探索器,关键对象检测器和类似人类的对象研究者。 Game Space Explorer旨在通过使用像素输入的基于好奇心的奖励功能来探索整个游戏空间。关键对象检测器的目的是基于少量标记的屏幕截图来检测游戏中的关键对象。类似人类的对象研究者的目标是模仿人类行为,以通过模仿学习来调查关键对象。我们在两个受欢迎的视频游戏中进行实验:射击游戏和动作RPG游戏。实验结果证明了检查员在探索游戏空间,检测关键对象和研究对象方面的有效性。此外,检查员在这两场比赛中成功发现了两个潜在的错误。检查员的演示视频可从https://github.com/inspector-gametesting/inspector-gametesting获得。

Deep reinforcement learning (DRL) has attracted much attention in automated game testing. Early attempts rely on game internal information for game space exploration, thus requiring deep integration with games, which is inconvenient for practical applications. In this work, we propose using only screenshots/pixels as input for automated game testing and build a general game testing agent, Inspector, that can be easily applied to different games without deep integration with games. In addition to covering all game space for testing, our agent tries to take human-like behaviors to interact with key objects in a game, since some bugs usually happen in player-object interactions. Inspector is based on purely pixel inputs and comprises three key modules: game space explorer, key object detector, and human-like object investigator. Game space explorer aims to explore the whole game space by using a curiosity-based reward function with pixel inputs. Key object detector aims to detect key objects in a game, based on a small number of labeled screenshots. Human-like object investigator aims to mimic human behaviors for investigating key objects via imitation learning. We conduct experiments on two popular video games: Shooter Game and Action RPG Game. Experiment results demonstrate the effectiveness of Inspector in exploring game space, detecting key objects, and investigating objects. Moreover, Inspector successfully discovers two potential bugs in those two games. The demo video of Inspector is available at https://github.com/Inspector-GameTesting/Inspector-GameTesting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源