论文标题

全面的图形渐进修剪图形神经网络稀疏训练

Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural Networks

论文作者

Liu, Chuang, Ma, Xueqi, Zhan, Yibing, Ding, Liang, Tao, Dapeng, Du, Bo, Hu, Wenbin, Mandic, Danilo

论文摘要

图形神经网络(GNNS)往往遭受高计算成本,因为图形数据的规模呈指数增长和模型参数的数量,这限制了它们在实际应用中的效用。为此,最近的一些作品着重于用彩票假设(LTH)稀疏GNN,以降低推理成本,同时保持绩效水平。但是,基于LTH的方法具有两个主要缺点:1)它们需要对密集模型进行详尽且迭代的训练,从而产生了极大的训练计算成本,2)它们仅修剪图形结构和模型参数,但忽略了节点特征维度,其中大量冗余存在。为了克服上述局限性,我们提出了一个综合的图形渐进修剪框架,称为CGP。这是通过在一个训练过程中设计在训练图上修剪范式的过程中修剪范式来动态修剪GNN来实现的。与基于LTH的方法不同,提出的CGP方法不需要重新训练,这大大降低了计算成本。此外,我们设计了一个共同的策略,以全面地修剪GNN的所有三个核心元素:图形结构,节点特征和模型参数。同时,旨在完善修剪操作,我们将重生过程引入我们的CGP框架,以重新建立修剪但重要的连接。通过在6个GNN体系结构中使用节点分类任务进行评估,包括浅层模型(GCN和GAT),浅但深度 - 散发模型(SGC和APPNP)以及DEEP模型(GCNII和RESGCN),总计14个现实图形数据集(包括大型图形),包括大型图形,包括大型图形。实验表明,我们提出的策略在匹配时大大提高了培训和推理效率,甚至超过了现有方法的准确性。

Graph Neural Networks (GNNs) tend to suffer from high computation costs due to the exponentially increasing scale of graph data and the number of model parameters, which restricts their utility in practical applications. To this end, some recent works focus on sparsifying GNNs with the lottery ticket hypothesis (LTH) to reduce inference costs while maintaining performance levels. However, the LTH-based methods suffer from two major drawbacks: 1) they require exhaustive and iterative training of dense models, resulting in an extremely large training computation cost, and 2) they only trim graph structures and model parameters but ignore the node feature dimension, where significant redundancy exists. To overcome the above limitations, we propose a comprehensive graph gradual pruning framework termed CGP. This is achieved by designing a during-training graph pruning paradigm to dynamically prune GNNs within one training process. Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs. Furthermore, we design a co-sparsifying strategy to comprehensively trim all three core elements of GNNs: graph structures, node features, and model parameters. Meanwhile, aiming at refining the pruning operation, we introduce a regrowth process into our CGP framework, in order to re-establish the pruned but important connections. The proposed CGP is evaluated by using a node classification task across 6 GNN architectures, including shallow models (GCN and GAT), shallow-but-deep-propagation models (SGC and APPNP), and deep models (GCNII and ResGCN), on a total of 14 real-world graph datasets, including large-scale graph datasets from the challenging Open Graph Benchmark. Experiments reveal that our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源