论文标题
整数算术是否足以进行深度学习培训?
Is Integer Arithmetic Enough for Deep Learning Training?
论文作者
论文摘要
深度学习模型的计算复杂性不断增加,使他们的培训和部署在各种云和边缘平台上变得困难。用低位整数算术代替浮点算术是一种有前途的方法,可节省能量,记忆足迹和深度学习模型的延迟。因此,量化引起了研究人员的注意。但是,使用整数数字形成功能齐全的整数训练管道,包括前进,后传播和随机梯度下降。我们的经验和数学结果表明,整数算术似乎足以训练深度学习模型。与最近的建议不同,我们直接切换计算的数字表示。我们的新型训练方法形成了完全整数训练管道,与浮点相比,它不会改变损失和准确性的轨迹,也不需要任何特殊的超参数调整,分配调整或梯度剪辑。我们的实验结果表明,我们提出的方法在各种任务(包括视觉变压器),对象检测和语义分割等多种任务中有效。
The ever-increasing computational complexity of deep learning models makes their training and deployment difficult on various cloud and edge platforms. Replacing floating-point arithmetic with low-bit integer arithmetic is a promising approach to save energy, memory footprint, and latency of deep learning models. As such, quantization has attracted the attention of researchers in recent years. However, using integer numbers to form a fully functional integer training pipeline including forward pass, back-propagation, and stochastic gradient descent is not studied in detail. Our empirical and mathematical results reveal that integer arithmetic seems to be enough to train deep learning models. Unlike recent proposals, instead of quantization, we directly switch the number representation of computations. Our novel training method forms a fully integer training pipeline that does not change the trajectory of the loss and accuracy compared to floating-point, nor does it need any special hyper-parameter tuning, distribution adjustment, or gradient clipping. Our experimental results show that our proposed method is effective in a wide variety of tasks such as classification (including vision transformers), object detection, and semantic segmentation.