论文标题

使用注意方法预测司法结果

Using attention methods to predict judicial outcomes

论文作者

Bertalan, Vithor Gomes Ferreira, Ruiz, Evandro Eduardo Seron

论文摘要

法律判决预测是NLP,AI和法律联合领域最受欢迎的领域之一。通过法律预测,我们是指能够预测特定司法特征的智能系统,例如司法结果,司法阶级,预测了一个特定案例。在这项研究中,我们使用AI分类器来预测巴西法律体系中的司法结果。为此,我们开发了一个文本轨道,以从巴西官方电子法律系统中提取数据。这些文本构成了二级谋杀和主动腐败案件的数据集。我们应用了不同的分类器,例如支持向量机和神经网络,通过分析数据集的文本特征来预测司法结果。我们的研究表明,回归树,封闭的重复单元和分层注意力网络给出了不同子集的较高指标。作为最终目标,我们探讨了一种算法的权重,即分层注意力网络,以找到用于免除或定罪被告的最重要词的样本。

Legal Judgment Prediction is one of the most acclaimed fields for the combined area of NLP, AI, and Law. By legal prediction we mean an intelligent systems capable to predict specific judicial characteristics, such as judicial outcome, a judicial class, predict an specific case. In this research, we have used AI classifiers to predict judicial outcomes in the Brazilian legal system. For this purpose, we developed a text crawler to extract data from the official Brazilian electronic legal systems. These texts formed a dataset of second-degree murder and active corruption cases. We applied different classifiers, such as Support Vector Machines and Neural Networks, to predict judicial outcomes by analyzing textual features from the dataset. Our research showed that Regression Trees, Gated Recurring Units and Hierarchical Attention Networks presented higher metrics for different subsets. As a final goal, we explored the weights of one of the algorithms, the Hierarchical Attention Networks, to find a sample of the most important words used to absolve or convict defendants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源