论文标题
Seshadri分层和舒伯特品种:标准单元理论的几何结构
Seshadri stratifications and Schubert varieties: a geometric construction of a standard monomial theory
论文作者
论文摘要
构建了舒伯特品种的标准单元理论(1)舒伯特品种的舒伯特subvarieties和(2)组合ls-path特性公式的schubert品种的几何形状。通过使用局部秩序的任意线性化并削弱平衡分层的定义,可以改善Seshadri分层的一般理论。
A standard monomial theory for Schubert varieties is constructed exploiting (1) the geometry of the Seshadri stratifications of Schubert varieties by their Schubert subvarieties and (2) the combinatorial LS-path character formula for Demazure modules. The general theory of Seshadri stratifications is improved by using arbitrary linearization of the partial order and by weakening the definition of balanced stratification.