论文标题
确定大型电荷运营商
Identifying Large Charge Operators
论文作者
论文摘要
可以通过围绕超流体背景的半经典扩张来描述保形场理论(CFT)的大电荷领域。在这项工作中,我们专注于$ u(1)$不变的威尔逊·菲什(Wilson-Fisher)固定点,我们研究了旋转大电荷运营商的范围。为了足够低自旋,这些对应于超流体状态的声子激发。我们讨论这些状态在自由田间理论限制中的保形多重组和相应复合算子的形式。后者需要在真空波动的fock空间与超级流体状态周围波动的fock空间之间,在倒数$ n^{ - 1} $中构建映射,逐订单。我们讨论了半经典方法的局限性,并发现声音描述分解了$ n^{1/2} $的自旋的分解,而可观察到的计算有效至顺序$ n $。最后,我们应用半经典方法来计算一些保形的3分和4点函数,并使用我们对操作员频谱的知识来分析后者的共形块分解。
The Large Charge sector of Conformal Field Theory (CFT) can generically be described through a semiclassical expansion around a superfluid background. In this work, focussing on $U(1)$ invariant Wilson-Fisher fixed points, we study the spectrum of spinning large charge operators. For sufficiently low spin these correspond to the phonon excitations of the superfluid state. We discuss the organization of these states into conformal multiplets and the form of the corresponding composite operators in the free field theory limit. The latter entails a mapping, built order-by-order in the inverse charge $n^{-1}$, between the Fock space of vacuum fluctuations and the Fock space of fluctuations around the superfluid state. We discuss the limitations of the semiclassical method, and find that the phonon description breaks down for spins of order $n^{1/2}$ while the computation of observables is valid up to spins of order $n$. Finally, we apply the semiclassical method to compute some conformal 3-point and 4-point functions, and analyze the conformal block decomposition of the latter with our knowledge of the operator spectrum.