论文标题

作为稀疏回归的恒星的永久性磁铁优化

Permanent magnet optimization for stellarators as sparse regression

论文作者

Kaptanoglu, Alan A., Qian, Tony, Wechsung, Florian, Landreman, Matt

论文摘要

一个常见的科学逆问题是放置在规定体积内产生所需磁场的磁铁。这是恒星设计的关键组成部分,最近已经提出了永久性磁铁作为磁场成型的潜在有用工具。在这里,我们仔细研究了永久磁铁优化的可能目标功能,将问题重新制定为稀疏回归,并提出了一种可以有效地解决许多凸和非凸变体的算法。该算法生成独立于初始猜测的稀疏解决方案,明确地强制了永久磁铁的最大强度,并准确地产生了所需的磁场。该算法是灵活的,我们的实现是开源和计算快速的。我们以NCSX和Muse Stellarators的两种新的永久磁铁配置结束。我们的方法可以另外应用于有效地解决其他科学领域的永久性磁铁优化,以及解决相当一般的高维,约束,稀疏回归问题,即使需要二进制解决方案。

A common scientific inverse problem is the placement of magnets that produce a desired magnetic field inside a prescribed volume. This is a key component of stellarator design, and recently permanent magnets have been proposed as a potentially useful tool for magnetic field shaping. Here, we take a closer look at possible objective functions for permanent magnet optimization, reformulate the problem as sparse regression, and propose an algorithm that can efficiently solve many convex and nonconvex variants. The algorithm generates sparse solutions that are independent of the initial guess, explicitly enforces maximum strengths for the permanent magnets, and accurately produces the desired magnetic field. The algorithm is flexible, and our implementation is open-source and computationally fast. We conclude with two new permanent magnet configurations for the NCSX and MUSE stellarators. Our methodology can be additionally applied for effectively solving permanent magnet optimizations in other scientific fields, as well as for solving quite general high-dimensional, constrained, sparse regression problems, even if a binary solution is required.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源