论文标题

多语言变压器编码器:一个单词级任务敏捷评估

Multilingual Transformer Encoders: a Word-Level Task-Agnostic Evaluation

论文作者

Gaschi, Félix, Plesse, François, Rastin, Parisa, Toussaint, Yannick

论文摘要

一些基于变压器的模型可以执行跨语言转移学习:这些模型可以通过一种语言对特定任务进行培训,并以另一种语言的同一任务给予相对良好的结果,尽管仅在单语任务中进行了预先培训。但是,关于这些基于变压器的模型是否学习跨语言的通用模式,目前尚无共识。我们提出了一种单词级任务无关的方法,以评估由此类模型构建的上下文化表示的对齐。我们表明,与以前的方法相比,我们的方法提供了更准确的翻译成对,以评估单词级别对齐。我们的结果表明,基于多语言变压器模型的某些内部层优于其他明确对齐的表示,甚至根据多语言对齐的更严格的定义,更是如此。

Some Transformer-based models can perform cross-lingual transfer learning: those models can be trained on a specific task in one language and give relatively good results on the same task in another language, despite having been pre-trained on monolingual tasks only. But, there is no consensus yet on whether those transformer-based models learn universal patterns across languages. We propose a word-level task-agnostic method to evaluate the alignment of contextualized representations built by such models. We show that our method provides more accurate translated word pairs than previous methods to evaluate word-level alignment. And our results show that some inner layers of multilingual Transformer-based models outperform other explicitly aligned representations, and even more so according to a stricter definition of multilingual alignment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源