论文标题
过滤歧管的计算中的横向指标定理
A transverse index theorem in the calculus of filtered manifolds
论文作者
论文摘要
我们使用歧管的切线束的过滤,从可集成的子捆绑开始,以将横向符号定义为相应的叶面,定义横向岩石的条件,并证明横向岩石运营商产生K-同源性类别。我们为横向岩石横向符号构建了一个eproimiant的KK级,并显示了连接操作员类及其符号的Poincare双重性结果。
We use filtrations of the tangent bundle of a manifold starting with an integrable subbundle to define transverse symbols to the corresponding foliation, define a condition of transversally Rockland and prove that transversally Rockland operators yield a K-homology class. We construct an equivariant KK-class for transversally Rockland transverse symbols and show a Poincare duality type result linking the class of an operator and its symbol.