论文标题
半监督的预测性聚类树(分层)多标签分类
Semi-supervised Predictive Clustering Trees for (Hierarchical) Multi-label Classification
论文作者
论文摘要
半监督学习(SSL)是使用不仅标记的示例,而且是未标记的示例学习预测模型的常见方法。尽管用于分类和回归的简单任务的SSL受到了研究社区的广泛关注,但对于具有结构依赖变量的复杂预测任务,这尚未得到适当的研究。多标签分类和分层多标签分类任务就是这种情况,这可能需要其他信息,可能来自未标记示例提供的描述性空间中的基础分布,以更好地面对同时预测多个类标签的挑战性任务。 在本文中,我们研究了这一方面,并提出了一种基于对预测性聚类树的半监督学习的(分层)多标签分类方法。我们还扩展了整体学习的方法,并提出了一种基于随机森林方法的方法。在23个数据集上进行的广泛的实验评估显示了该方法的显着优势及其在其监督对应物方面的扩展。此外,该方法可保留可解释性并降低基于经典树模型的时间复杂性。
Semi-supervised learning (SSL) is a common approach to learning predictive models using not only labeled examples, but also unlabeled examples. While SSL for the simple tasks of classification and regression has received a lot of attention from the research community, this is not properly investigated for complex prediction tasks with structurally dependent variables. This is the case of multi-label classification and hierarchical multi-label classification tasks, which may require additional information, possibly coming from the underlying distribution in the descriptive space provided by unlabeled examples, to better face the challenging task of predicting simultaneously multiple class labels. In this paper, we investigate this aspect and propose a (hierarchical) multi-label classification method based on semi-supervised learning of predictive clustering trees. We also extend the method towards ensemble learning and propose a method based on the random forest approach. Extensive experimental evaluation conducted on 23 datasets shows significant advantages of the proposed method and its extension with respect to their supervised counterparts. Moreover, the method preserves interpretability and reduces the time complexity of classical tree-based models.