论文标题

格拉曼尼亚人在戒指和子病因上

Grassmannians over rings and subpolygons

论文作者

Cuntz, Michael

论文摘要

我们调查了格拉曼尼亚人的特殊点,该特殊要点与第二等级相对应的系数。使用算术矩阵的表示,我们在坐标环的特殊测量值上获得定理。作为一种特殊情况,我们在经典的饰边图案中恢复了子分子的表征。此外,我们观察到,专门将硕士坐标环的簇变为单位,可以将其解释为具有显着特性的超平面的排列。特别是,我们将某些Weyl群和类固醇作为广义的饰面模式得到解释。

We investigate special points on the Grassmannian which correspond to friezes with coefficients in the case of rank two. Using representations of arithmetic matroids we obtain a theorem on subpolygons of specializations of the coordinate ring. As a special case we recover the characterization of subpolygons in classic frieze patterns. Moreover, we observe that specializing clusters of the coordinate ring of the Grassmannian to units yields representations that may be interpreted as arrangements of hyperplanes with notable properties. In particular, we get an interpretation of certain Weyl groups and groupoids as generalized frieze patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源