论文标题

rclane:泳道检测的继电器链预测

RCLane: Relay Chain Prediction for Lane Detection

论文作者

Xu, Shenghua, Cai, Xinyue, Zhao, Bin, Zhang, Li, Xu, Hang, Fu, Yanwei, Xue, Xiangyang

论文摘要

车道检测是许多实际自治系统的重要组成部分。尽管已经提出了各种各样的车道检测方法,但随着时间的推移报告了基准的稳定改善,但车道检测仍然是一个未解决的问题。这是因为大多数现有的车道检测方法要么将车道检测视为密集的预测或检测任务,因此很少有人考虑泳道标记物的独特拓扑(Y形,叉形,几乎水平的泳道),这会导致次优溶液。在本文中,我们提出了一种基于继电器链预测的新方法检测。具体而言,我们的模型预测了分割图以对前景和背景区域进行分类。对于前景区域中的每个像素点,我们穿过前向分支和向后分支以恢复整个车道。每个分支都将传输图和距离图解码,以产生移动到下一个点的方向,以及逐步预测继电器站的步骤(下一个点)。因此,我们的模型能够捕获沿车道的关键点。尽管它很简单,但我们的策略使我们能够在包括Tusimple,Culane,Curvelanes和Llamas在内的四个主要基准上建立新的最先进。

Lane detection is an important component of many real-world autonomous systems. Despite a wide variety of lane detection approaches have been proposed, reporting steady benchmark improvements over time, lane detection remains a largely unsolved problem. This is because most of the existing lane detection methods either treat the lane detection as a dense prediction or a detection task, few of them consider the unique topologies (Y-shape, Fork-shape, nearly horizontal lane) of the lane markers, which leads to sub-optimal solution. In this paper, we present a new method for lane detection based on relay chain prediction. Specifically, our model predicts a segmentation map to classify the foreground and background region. For each pixel point in the foreground region, we go through the forward branch and backward branch to recover the whole lane. Each branch decodes a transfer map and a distance map to produce the direction moving to the next point, and how many steps to progressively predict a relay station (next point). As such, our model is able to capture the keypoints along the lanes. Despite its simplicity, our strategy allows us to establish new state-of-the-art on four major benchmarks including TuSimple, CULane, CurveLanes and LLAMAS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源