论文标题
季节:德国卫星图像的季节性场景分类,细分和检索数据集
SeasoNet: A Seasonal Scene Classification, segmentation and Retrieval dataset for satellite Imagery over Germany
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This work presents SeasoNet, a new large-scale multi-label land cover and land use scene understanding dataset. It includes $1\,759\,830$ images from Sentinel-2 tiles, with 12 spectral bands and patch sizes of up to $ 120 \ \mathrm{px} \times 120 \ \mathrm{px}$. Each image is annotated with large scale pixel level labels from the German land cover model LBM-DE2018 with land cover classes based on the CORINE Land Cover database (CLC) 2018 and a five times smaller minimum mapping unit (MMU) than the original CLC maps. We provide pixel synchronous examples from all four seasons, plus an additional snowy set. These properties make SeasoNet the currently most versatile and biggest remote sensing scene understanding dataset with possible applications ranging from scene classification over land cover mapping to content-based cross season image retrieval and self-supervised feature learning. We provide baseline results by evaluating state-of-the-art deep networks on the new dataset in scene classification and semantic segmentation scenarios.