论文标题
基于动力学的系统计算模型,用于解决超图上的组合优化
Dynamical system-based computational models for solving combinatorial optimization on hypergraphs
论文作者
论文摘要
动力学系统中的固有能量最小化提供了一种有价值的工具,可最大程度地降低组合优化中计算挑战性问题的目标功能。但是,大多数先前的作品都集中在将这种动力学映射到组合目标函数具有二次程度(例如maxcut)的组合。可以使用图表来表示和分析此类问题。但是,开发此类模型的工作需要大于两个的目标函数,随后需要使用HyperGraph数据结构,这是相对稀疏的。在这项工作中,我们为几个此类问题开发了动态系统启发的计算模型。具体而言,我们定义了基于超图的组合问题的“能量函数”,从布尔SAT及其变体到整数分解,随后定义了所得系统的动力学。我们还表明,该设计方法适用于具有二次程度的优化问题,并使用它开发了一种新的动力系统公式,以最大程度地减少伊辛·哈密顿式的。我们的工作不仅扩大了可以直接映射到物理启发的模型并解决的问题的范围,而且还为设计高性能加速器而创造了新的机会,以求解组合优化。
The intrinsic energy minimization in dynamical systems offers a valuable tool for minimizing the objective functions of computationally challenging problems in combinatorial optimization. However, most prior works have focused on mapping such dynamics to combinatorial optimization problems whose objective functions have quadratic degree (e.g., MaxCut); such problems can be represented and analyzed using graphs. However, the work on developing such models for problems that need objective functions with degree greater than two, and subsequently, entail the use of hypergraph data structures, is relatively sparse. In this work, we develop dynamical system-inspired computational models for several such problems. Specifically, we define the 'energy function' for hypergraph-based combinatorial problems ranging from Boolean SAT and its variants to integer factorization, and subsequently, define the resulting system dynamics. We also show that the design approach is applicable to optimization problems with quadratic degree, and use it develop a new dynamical system formulation for minimizing the Ising Hamiltonian. Our work not only expands on the scope of problems that can be directly mapped to, and solved using physics-inspired models, but also creates new opportunities to design high-performance accelerators for solving combinatorial optimization.