论文标题

对广义等级的交替最小化一个矩阵传感:随机初始化的尖锐预测

Alternating minimization for generalized rank one matrix sensing: Sharp predictions from a random initialization

论文作者

Chandrasekher, Kabir Aladin, Lou, Mengqi, Pananjady, Ashwin

论文摘要

我们考虑估计与I.I.D. $ 1 $矩阵的因素的问题。高斯,排名为$ 1 $的测量值,这些测量值非线性地转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的自然交流更新规则的收敛性。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示了该算法的样本分解版本的鲜明收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并且建议在单个步骤中精确恢复,但算法和我们的确定性预测会从随机初始化中快速收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。 从技术层面上讲,我们的结果是通过证明经验错误递归可以通过我们的确定性顺序来预测的,我们可以通过$ n $ obsisters运行每次迭代时的确定性序列。我们的技术利用了源自有关高维$ m $估计文献的一项输出工具,并为通过随机数据的其他高维优化问题的随机初始化从随机的随机数据中的随机初始化中彻底初始化提供了途径。

We consider the problem of estimating the factors of a rank-$1$ matrix with i.i.d. Gaussian, rank-$1$ measurements that are nonlinearly transformed and corrupted by noise. Considering two prototypical choices for the nonlinearity, we study the convergence properties of a natural alternating update rule for this nonconvex optimization problem starting from a random initialization. We show sharp convergence guarantees for a sample-split version of the algorithm by deriving a deterministic recursion that is accurate even in high-dimensional problems. Notably, while the infinite-sample population update is uninformative and suggests exact recovery in a single step, the algorithm -- and our deterministic prediction -- converges geometrically fast from a random initialization. Our sharp, non-asymptotic analysis also exposes several other fine-grained properties of this problem, including how the nonlinearity and noise level affect convergence behavior. On a technical level, our results are enabled by showing that the empirical error recursion can be predicted by our deterministic sequence within fluctuations of the order $n^{-1/2}$ when each iteration is run with $n$ observations. Our technique leverages leave-one-out tools originating in the literature on high-dimensional $M$-estimation and provides an avenue for sharply analyzing higher-order iterative algorithms from a random initialization in other high-dimensional optimization problems with random data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源