论文标题
跨种族,年龄和性别的房颤诊断的可推广和健壮的深度学习算法
Generalizable and Robust Deep Learning Algorithm for Atrial Fibrillation Diagnosis Across Ethnicities, Ages and Sexes
论文作者
论文摘要
为了推动满足所有人需求并使医疗保健民主化的健康创新,有必要评估深度学习(DL)算法的概括性能,以确保这些算法具有强大的态度。据我们所知,这项回顾性研究是第一个开发和评估从跨种族,年龄和性别的长期跳动间隔的AF事件检测的深度学习模型(DL)模型的概括(DL)模型的概括。新的复发DL模型(表示为ARNET2)是在2,147名患者的大型回顾性数据集中开发的,总计51,386小时连续心电图(ECG)。对来自四个中心(美国,以色列,日本和中国)的手动注释的测试集评估了模型的概括,总计402名患者。该模型在以色列海法的Rambam Hospital Hospital Clinic的1,730个Consecutives Holter记录的回顾性数据集上得到了进一步验证。该模型的表现优于最新的基准模型,并且在种族,年龄和性别之间进行了广泛的良好。女性的表现高于男性和年轻人(不到60岁),并且在种族之间显示出一些差异。解释这些变化的主要发现是心房颤动患病率更高(AFL)的群体的性能受损。我们对跨组的ARNET2相对性能的发现可能对选择相对于感兴趣群的首选AF检查方法具有临床意义。
To drive health innovation that meets the needs of all and democratize healthcare, there is a need to assess the generalization performance of deep learning (DL) algorithms across various distribution shifts to ensure that these algorithms are robust. This retrospective study is, to the best of our knowledge, the first to develop and assess the generalization performance of a deep learning (DL) model for AF events detection from long term beat-to-beat intervals across ethnicities, ages and sexes. The new recurrent DL model, denoted ArNet2, was developed on a large retrospective dataset of 2,147 patients totaling 51,386 hours of continuous electrocardiogram (ECG). The models generalization was evaluated on manually annotated test sets from four centers (USA, Israel, Japan and China) totaling 402 patients. The model was further validated on a retrospective dataset of 1,730 consecutives Holter recordings from the Rambam Hospital Holter clinic, Haifa, Israel. The model outperformed benchmark state-of-the-art models and generalized well across ethnicities, ages and sexes. Performance was higher for female than male and young adults (less than 60 years old) and showed some differences across ethnicities. The main finding explaining these variations was an impairment in performance in groups with a higher prevalence of atrial flutter (AFL). Our findings on the relative performance of ArNet2 across groups may have clinical implications on the choice of the preferred AF examination method to use relative to the group of interest.