论文标题
BigColor:使用自然图像先验的生成颜色的着色
BigColor: Colorization using a Generative Color Prior for Natural Images
论文作者
论文摘要
对于现实和生动的着色,最近已经利用了生成先验。但是,由于其表示有限的表示空间,这种生成先验通常会因野外复杂图像而失败。在本文中,我们提出了BigColor,这是一种新型的着色方法,可为具有复杂结构的不同野外图像提供生动的着色。虽然对以前的生成先验进行了培训以综合图像结构和颜色,但考虑到图像的空间结构,我们在关注颜色合成之前就学会了一种生成颜色。通过这种方式,我们减轻了从生成性先验中综合图像结构的负担,并扩大其表示空间以覆盖各种图像。为此,我们提出了一个以Biggan启发的编码器网络网络,该网络使用空间特征映射而不是空间上的Biggan潜在代码,从而产生了扩大的表示空间。我们的方法可以在单个正向通行中为各种输入提供强大的着色,支持任意输入分辨率,并提供多模式着色结果。我们证明,BigColor的表现明显优于现有方法,尤其是在具有复杂结构的野外图像上。
For realistic and vivid colorization, generative priors have recently been exploited. However, such generative priors often fail for in-the-wild complex images due to their limited representation space. In this paper, we propose BigColor, a novel colorization approach that provides vivid colorization for diverse in-the-wild images with complex structures. While previous generative priors are trained to synthesize both image structures and colors, we learn a generative color prior to focus on color synthesis given the spatial structure of an image. In this way, we reduce the burden of synthesizing image structures from the generative prior and expand its representation space to cover diverse images. To this end, we propose a BigGAN-inspired encoder-generator network that uses a spatial feature map instead of a spatially-flattened BigGAN latent code, resulting in an enlarged representation space. Our method enables robust colorization for diverse inputs in a single forward pass, supports arbitrary input resolutions, and provides multi-modal colorization results. We demonstrate that BigColor significantly outperforms existing methods especially on in-the-wild images with complex structures.