论文标题

高超音速流中施加的磁流体动力效应的数值建模

Numerical modelling of imposed magnetohydrodynamic effects in hypersonic flows

论文作者

Muir, Heather A., Nikiforakis, Nikos

论文摘要

在高焓高超音速流中形成的弱离子化等离子体可以通过施加的磁场来积极操纵 - 一种称为磁性水力动力学(MHD)流量控制的概念。在表现出多种冲击相互作用的流中,强加的MHD效应对新兴航空技术的影响是影响:包括通过磁性驱动的空气动力控制。但是,由于特征形成的灵敏度和弱电离,导电性的空气等离子体的真实气体建模,该流动类型的数值建模仍然具有挑战性。在这项工作中,已经开发了数值模拟能力,用于研究受影响的高血压流,约2D轴对称非简单几何形状。经过验证的数值方法,结合了空气等离子体的先进的19种状态方程,可以在5.6双锥几何形状的模拟和实验之间实现定量一致,并具有施加的磁场。进行数值研究,以实现各种锥形表面角度和磁场构型。本文展示了如何通过复杂的冲击相互作用的高超音速流动,不仅在冲击位置方面增加了MHD影响的流动,而且可能在基本流动结构中表现出拓扑适应。引入了针对新兴流量拓扑的分类系统。应用的数值研究检查了磁场构型影响MHD增强冲击结构的机制,从而导致:(1)MHD增强效应幅度的差异,以及(2)流动拓扑结构的结构适应。最关键的是,鉴定出磁相互作用效应与广义机械控制表面之间产生拓扑等效性的条件类别。

Weakly ionised plasmas, formed in high enthalpy hypersonic flows, can be actively manipulated via imposed magnetic fields - a concept termed magnetohydrodynamic (MHD) flow control. Imposed MHD effects, within flows which exhibit multiple shock interactions, are consequential for emerging aerospace technologies: including aerodynamic control via magnetic actuation. However, numerical modelling of this flow type remains challenging due to the sensitivity of feature formation and the real gas modelling of weakly ionised, electrically conductive, air plasma. In this work, numerical simulation capabilities have been developed for the study of MHD affected, hypersonic flows, around 2D axisymmetric non-simple geometries. The validated numerical methodology, combined with an advanced 19 species equation of state for air plasma, achieves quantitative agreement between simulation and experiment for a Mach 5.6 double cone geometry with applied magnetic field. Numerical studies are conducted for varied conical surface angle and magnetic field configuration. This paper demonstrates how, for hypersonic flows with complex shock interactions, the MHD affected flow is not only augmented in terms of shock position, but may exhibit topological adaptations in the fundamental flow structure. A classification system is introduced for the emergent flow topologies. The applied numerical studies examine the mechanisms by which the magnetic field configuration influences the MHD augmented shock structure, leading to: (1) differences in magnitude of MHD enhancement effect, and (2) structural adaptations of the flow topology. Most critically, classes of conditions are identified which produce topological equivalence between the magnetic interaction effects and a generalised mechanical control surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源