论文标题
深度预处理及其在地震波场加工中的应用
Deep Preconditioners and their application to seismic wavefield processing
论文作者
论文摘要
地震数据处理在很大程度上取决于物理驱动的反问题的解决方案。在存在不利的数据采集条件下(例如,源和/或接收器的规则或不规则的粗略采样),基本的反问题变得非常不适,需要先进的信息才能获得令人满意的解决方案。刺激性反演,再加上固定基础的稀疏变换,代表了许多处理任务的首选方法,因为其实现的简单性并在各种采集方案中都证明了成功的应用。利用深神经网络找到复杂的多维矢量空间的紧凑表示的能力,我们建议训练自动编码器网络,以了解输入地震数据与代表性潜流歧管之间的直接映射。随后,训练有素的解码器被用作手头物理驱动的逆问题的非线性预处理。提供了各种地震处理任务的合成数据和现场数据,并且所提出的非线性,学习的转换显示出比固定基本的变化胜过更快的固定基本转换和收敛的速度。
Seismic data processing heavily relies on the solution of physics-driven inverse problems. In the presence of unfavourable data acquisition conditions (e.g., regular or irregular coarse sampling of sources and/or receivers), the underlying inverse problem becomes very ill-posed and prior information is required to obtain a satisfactory solution. Sparsity-promoting inversion, coupled with fixed-basis sparsifying transforms, represent the go-to approach for many processing tasks due to its simplicity of implementation and proven successful application in a variety of acquisition scenarios. Leveraging the ability of deep neural networks to find compact representations of complex, multi-dimensional vector spaces, we propose to train an AutoEncoder network to learn a direct mapping between the input seismic data and a representative latent manifold. The trained decoder is subsequently used as a nonlinear preconditioner for the physics-driven inverse problem at hand. Synthetic and field data are presented for a variety of seismic processing tasks and the proposed nonlinear, learned transformations are shown to outperform fixed-basis transforms and convergence faster to the sought solution.