论文标题
基于数字双胞胎的工业控制系统的入侵检测
Digital Twin-based Intrusion Detection for Industrial Control Systems
论文作者
论文摘要
数字双胞胎最近对工业控制系统(ICS)的模拟,优化和预测维护产生了重大兴趣。最近的研究讨论了在工业系统中使用数字双胞胎进行入侵检测的可能性。因此,这项研究为工业控制系统的基于数字双胞胎的安全框架做出了贡献,从而扩展了其模拟攻击和防御机制的能力。在独立的开源数字双胞胎上实施了四种类型的过程感知攻击方案:命令注入,网络拒绝服务(DOS),计算的测量修改和天真的测量修改。根据八种监督机器学习算法的离线评估,建议将堆叠的合奏分类器作为实时入侵检测。通过组合各种算法的预测,设计的堆叠模型就F1得分和准确性方面优于先前的方法,而它可以在接近实时(0.1秒)内检测和分类入侵。这项研究还讨论了拟议的基于数字双胞胎的安全框架的实用性和好处。
Digital twins have recently gained significant interest in simulation, optimization, and predictive maintenance of Industrial Control Systems (ICS). Recent studies discuss the possibility of using digital twins for intrusion detection in industrial systems. Accordingly, this study contributes to a digital twin-based security framework for industrial control systems, extending its capabilities for simulation of attacks and defense mechanisms. Four types of process-aware attack scenarios are implemented on a standalone open-source digital twin of an industrial filling plant: command injection, network Denial of Service (DoS), calculated measurement modification, and naive measurement modification. A stacked ensemble classifier is proposed as the real-time intrusion detection, based on the offline evaluation of eight supervised machine learning algorithms. The designed stacked model outperforms previous methods in terms of F1-Score and accuracy, by combining the predictions of various algorithms, while it can detect and classify intrusions in near real-time (0.1 seconds). This study also discusses the practicality and benefits of the proposed digital twin-based security framework.