论文标题

使用信念传播的轨迹PMB过滤器用于扩展对象跟踪

Trajectory PMB Filters for Extended Object Tracking Using Belief Propagation

论文作者

Xia, Yuxuan, García-Fernández, Ángel F., Meyer, Florian, Williams, Jason L., Granström, Karl, Svensson, Lennart

论文摘要

在本文中,我们提出了用于扩展对象跟踪(EOT)的泊松多伯努利(PMB)滤波器,该滤波器使用信念传播(BP)直接估算对象轨迹的集合。提出的滤波器通过过滤递归随着时间的推移在轨迹集的后部传播PMB密度,在更新步骤后,PMB混合物(PMBM)后验约为PMB。有效的PMB近似依赖于几个重要的理论贡献。首先,我们为广义测量模型的轨迹集的后部提出了PMBM共轭物,在该集合中,每个对象都会生成独立的测量集。 PMBM密度是共轭的,从某种意义上说,预测步骤和更新步骤都保留了密度的PMBM形式。其次,我们介绍了泊松空间测量模型的PMBM轨迹和关联变量的关节后部的因子图表示。重要的是,利用PMBM结合性和因子图公式可以通过泊松点过程对未发现的对象进行优雅的处理,并使用BP对一组轨迹进行有效的推断,其中PMB近似中的近似边缘密度可以在没有不同数据关联假设的情况下获得PMB近似值。为了实现这一目标,我们提出了基于粒子的滤波过滤器的实现,如果需要,可以通过单对象粒子平滑方法获得平滑的轨迹估计,并在模拟研究中评估其具有椭圆形形状的EOT的性能。

In this paper, we propose a Poisson multi-Bernoulli (PMB) filter for extended object tracking (EOT), which directly estimates the set of object trajectories, using belief propagation (BP). The proposed filter propagates a PMB density on the posterior of sets of trajectories through the filtering recursions over time, where the PMB mixture (PMBM) posterior after the update step is approximated as a PMB. The efficient PMB approximation relies on several important theoretical contributions. First, we present a PMBM conjugate prior on the posterior of sets of trajectories for a generalized measurement model, in which each object generates an independent set of measurements. The PMBM density is a conjugate prior in the sense that both the prediction and the update steps preserve the PMBM form of the density. Second, we present a factor graph representation of the joint posterior of the PMBM set of trajectories and association variables for the Poisson spatial measurement model. Importantly, leveraging the PMBM conjugacy and the factor graph formulation enables an elegant treatment on undetected objects via a Poisson point process and efficient inference on sets of trajectories using BP, where the approximate marginal densities in the PMB approximation can be obtained without enumeration of different data association hypotheses. To achieve this, we present a particle-based implementation of the proposed filter, where smoothed trajectory estimates, if desired, can be obtained via single-object particle smoothing methods, and its performance for EOT with ellipsoidal shapes is evaluated in a simulation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源