论文标题
具有对象,属性和类别学习的场景识别
Scene Recognition with Objectness, Attribute and Category Learning
论文作者
论文摘要
场景分类已确定为一个具有挑战性的研究问题。与单个对象的图像相比,场景图像在语义上可能更为复杂和抽象。它们的差异主要在于识别的粒度水平。然而,图像识别是场景识别良好表现的关键支柱,因为从对象图像中获得的知识可用于准确识别场景。现有场景识别方法仅考虑场景的类别标签。但是,我们发现包含详细的本地描述的上下文信息也有益于允许场景识别模型更具歧视性。在本文中,我们旨在使用对象中编码的属性和类别标签信息来改善场景识别。基于属性和类别标签的互补性,我们提出了一个多任务属性识别识别(MASR)网络,该网络学习类别嵌入,同时预测场景属性。属性采集和对象注释是乏味且耗时的任务。我们通过提出部分监督的注释策略来解决该问题,其中人类干预大大减少。该策略为现实世界的情况提供了更具成本效益的解决方案,并且需要减少注释工作。此外,考虑到检测到的分数所指示的重要性水平,我们重新权威的属性预测。使用所提出的方法,我们有效地注释了四个大型数据集的属性标签,并系统地研究场景和属性识别如何彼此受益。实验结果表明,与最先进的方法相比
Scene classification has established itself as a challenging research problem. Compared to images of individual objects, scene images could be much more semantically complex and abstract. Their difference mainly lies in the level of granularity of recognition. Yet, image recognition serves as a key pillar for the good performance of scene recognition as the knowledge attained from object images can be used for accurate recognition of scenes. The existing scene recognition methods only take the category label of the scene into consideration. However, we find that the contextual information that contains detailed local descriptions are also beneficial in allowing the scene recognition model to be more discriminative. In this paper, we aim to improve scene recognition using attribute and category label information encoded in objects. Based on the complementarity of attribute and category labels, we propose a Multi-task Attribute-Scene Recognition (MASR) network which learns a category embedding and at the same time predicts scene attributes. Attribute acquisition and object annotation are tedious and time consuming tasks. We tackle the problem by proposing a partially supervised annotation strategy in which human intervention is significantly reduced. The strategy provides a much more cost-effective solution to real world scenarios, and requires considerably less annotation efforts. Moreover, we re-weight the attribute predictions considering the level of importance indicated by the object detected scores. Using the proposed method, we efficiently annotate attribute labels for four large-scale datasets, and systematically investigate how scene and attribute recognition benefit from each other. The experimental results demonstrate that MASR learns a more discriminative representation and achieves competitive recognition performance compared to the state-of-the-art methods