论文标题

在标签粒度和对象本地化上

On Label Granularity and Object Localization

论文作者

Cole, Elijah, Wilber, Kimberly, Van Horn, Grant, Yang, Xuan, Fornoni, Marco, Perona, Pietro, Belongie, Serge, Howard, Andrew, Mac Aodha, Oisin

论文摘要

弱监督的对象本地化(WSOL)旨在学习仅使用图像级类别标签编码对象位置的表示形式。但是,许多物体可以在不同级别的粒度上标记。它是动物,鸟还是巨大的角猫头鹰?我们应该使用哪些图像级标签?在本文中,我们研究了标签粒度在WSOL中的作用。为了促进这项调查,我们推出了Inatloc500,这是一种新的用于WSOL的​​大型细粒基准数据集。令人惊讶的是,我们发现选择正确的训练标签粒度比选择最佳的WSOL算法提供了更大的性能。我们还表明,更改标签粒度可以显着提高数据效率。

Weakly supervised object localization (WSOL) aims to learn representations that encode object location using only image-level category labels. However, many objects can be labeled at different levels of granularity. Is it an animal, a bird, or a great horned owl? Which image-level labels should we use? In this paper we study the role of label granularity in WSOL. To facilitate this investigation we introduce iNatLoc500, a new large-scale fine-grained benchmark dataset for WSOL. Surprisingly, we find that choosing the right training label granularity provides a much larger performance boost than choosing the best WSOL algorithm. We also show that changing the label granularity can significantly improve data efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源