论文标题
在标签粒度和对象本地化上
On Label Granularity and Object Localization
论文作者
论文摘要
弱监督的对象本地化(WSOL)旨在学习仅使用图像级类别标签编码对象位置的表示形式。但是,许多物体可以在不同级别的粒度上标记。它是动物,鸟还是巨大的角猫头鹰?我们应该使用哪些图像级标签?在本文中,我们研究了标签粒度在WSOL中的作用。为了促进这项调查,我们推出了Inatloc500,这是一种新的用于WSOL的大型细粒基准数据集。令人惊讶的是,我们发现选择正确的训练标签粒度比选择最佳的WSOL算法提供了更大的性能。我们还表明,更改标签粒度可以显着提高数据效率。
Weakly supervised object localization (WSOL) aims to learn representations that encode object location using only image-level category labels. However, many objects can be labeled at different levels of granularity. Is it an animal, a bird, or a great horned owl? Which image-level labels should we use? In this paper we study the role of label granularity in WSOL. To facilitate this investigation we introduce iNatLoc500, a new large-scale fine-grained benchmark dataset for WSOL. Surprisingly, we find that choosing the right training label granularity provides a much larger performance boost than choosing the best WSOL algorithm. We also show that changing the label granularity can significantly improve data efficiency.