论文标题

金星二进制云系统的快速,半分析模型

A Fast, Semi-analytical Model for the Venusian Binary Cloud System

论文作者

Dai, Longkang, Zhang, Xi, Cui, Jun

论文摘要

金星云源自H $ _ {2} $的二进制冷凝,因此$ _ {4} $和H $ _ {2} $ O。这两个成分通过化学和云形成强烈相互作用。以前的作品采用了精致的微物理方法来理解云。在这里,我们表明,金星上观察到的蒸气和云分布可以通过半分析模型很好地解释。我们的模型假设水蒸气的局部热力学平衡,但不用于硫酸蒸气,其中包括云凝结和酸度对蒸气分布的反馈。该模型预测H $ _ {2} $的强饱和,因此$ _ {4} $蒸气在60公里以上,与我们最近的云凝结模型一致。半分析模型比冷凝模型快100倍,比微物理模型快1000倍。这使我们能够快速探索硫酸气云系统的大参数空间。我们发现,上云中的云质量负载在下部云中与下层大气中的蒸气混合比的反应相反。水蒸气的运输会影响所有云层的云酸度,而硫酸蒸气的运输仅在下部云中占主导地位。该云模型足够快,可以与气候模型和化学模型相结合,以了解金星和类似金星的阳光外行星的浑浊气氛。

The Venusian clouds originate from the binary condensation of H$_{2}$SO$_{4}$ and H$_{2}$O. The two components strongly interact with each other via chemistry and cloud formation. Previous works adopted sophisticated microphysical approaches to understand the clouds. Here we show that the observed vapor and cloud distributions on Venus can be well explained by a semi-analytical model. Our model assumes local thermodynamical equilibrium for water vapor but not for sulfuric acid vapor, and includes the feedback of cloud condensation and acidity to vapor distributions. The model predicts strong supersaturation of the H$_{2}$SO$_{4}$ vapor above 60 km, consistent with our recent cloud condensation model. The semi-analytical model is 100 times faster than the condensation model and 1000 times faster than the microphysical models. This allows us to quickly explore a large parameter space of the sulfuric acid gas-cloud system. We found that the cloud mass loading in the upper clouds has an opposite response of that in the lower clouds to the vapor mixing ratios in the lower atmosphere. The transport of water vapor influences the cloud acidity in all cloud layers while the transport of sulfuric acid vapor only dominates in the lower clouds. This cloud model is fast enough to be coupled with the climate models and chemistry models to understand the cloudy atmospheres of Venus and Venus-like extra-solar planets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源