论文标题

通过重要性采样的有效搜索具有不同复杂性的多个神经体系结构

Efficient Search of Multiple Neural Architectures with Different Complexities via Importance Sampling

论文作者

Noda, Yuhei, Saito, Shota, Shirakawa, Shinichi

论文摘要

神经体系结构搜索(NAS)旨在自动化体系结构设计过程并提高深神经网络的性能。平台感知的NAS方法同时考虑性能和复杂性,并且可以找到具有低计算资源的表现良好的体系结构。尽管普通的NAS方法导致了由于模型训练的重复而导致的巨大计算成本,但在搜索过程中训练包含所有候选体系结构的超级网的重量,它的重量较低。这项研究着重于体系结构复杂性的单发NA,该NA优化了由两个指标的加权总和组成的目标函数,例如预测性能和参数的数量。在现有方法中,架构搜索过程必须多次运行,具有不同的加权总和系数,以获得具有不同复杂性的多个体系结构。这项研究旨在降低与寻找多个体系结构相关的搜索成本。所提出的方法使用多个分布来生成具有不同复杂性的体系结构,并使用基于重要性采样的多个分布获得的样本来更新每个分布。提出的方法使我们能够在单个体系结构搜索中获得具有不同复杂性的多个体系结构,从而降低了搜索成本。提出的方法应用于CIAFR-10和Imagenet数据集上卷积神经网络的体系结构搜索。因此,与基线方法相比,所提出的方法发现了多个复杂性不同的架构,同时需要减少计算工作。

Neural architecture search (NAS) aims to automate architecture design processes and improve the performance of deep neural networks. Platform-aware NAS methods consider both performance and complexity and can find well-performing architectures with low computational resources. Although ordinary NAS methods result in tremendous computational costs owing to the repetition of model training, one-shot NAS, which trains the weights of a supernetwork containing all candidate architectures only once during the search process, has been reported to result in a lower search cost. This study focuses on the architecture complexity-aware one-shot NAS that optimizes the objective function composed of the weighted sum of two metrics, such as the predictive performance and number of parameters. In existing methods, the architecture search process must be run multiple times with different coefficients of the weighted sum to obtain multiple architectures with different complexities. This study aims at reducing the search cost associated with finding multiple architectures. The proposed method uses multiple distributions to generate architectures with different complexities and updates each distribution using the samples obtained from multiple distributions based on importance sampling. The proposed method allows us to obtain multiple architectures with different complexities in a single architecture search, resulting in reducing the search cost. The proposed method is applied to the architecture search of convolutional neural networks on the CIAFR-10 and ImageNet datasets. Consequently, compared with baseline methods, the proposed method finds multiple architectures with varying complexities while requiring less computational effort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源