论文标题

光谱指数和特征中化学键表示的神经网络学习

Neural Network Learning of Chemical Bond Representations in Spectral Indices and Features

论文作者

Basener, Bill

论文摘要

在本文中,我们研究了高光谱成像中分类的神经网络,重点是将网络的结构与存在的感应和材料的物理学联系起来。光谱是测量材料作为功能波长反射或发射的光的过程。材料中存在的分子键具有影响每个波长下测得的光量的振动频率。因此,测得的光谱包含有关特定化学成分和键类型的信息。例如,叶绿素反映了近红外狂暴(800-900nm)的光(625-675nm)范围,并且可以使用归一化植被差异指数(NDVI)来测量这种差异,该指数(NDVI)通常用于检测植被,健康和在这些波长中收集的成像中的类型。在本文中,我们表明,接受不同植被类别的神经网络中的权重学会衡量反射率的差异。然后,我们表明,在更复杂的十种不同聚合物材料组中训练的神经网络将学习网络重量中明显的光谱“特征”,并且这些功能可用于可靠地区分不同类型的聚合物。对权重的检查提供了对网络的人性解释的理解。

In this paper we investigate neural networks for classification in hyperspectral imaging with a focus on connecting the architecture of the network with the physics of the sensing and materials present. Spectroscopy is the process of measuring light reflected or emitted by a material as a function wavelength. Molecular bonds present in the material have vibrational frequencies which affect the amount of light measured at each wavelength. Thus the measured spectrum contains information about the particular chemical constituents and types of bonds. For example, chlorophyll reflects more light in the near-IR rage (800-900nm) than in the red (625-675nm) range, and this difference can be measured using a normalized vegetation difference index (NDVI), which is commonly used to detect vegetation presence, health, and type in imagery collected at these wavelengths. In this paper we show that the weights in a Neural Network trained on different vegetation classes learn to measure this difference in reflectance. We then show that a Neural Network trained on a more complex set of ten different polymer materials will learn spectral 'features' evident in the weights for the network, and these features can be used to reliably distinguish between the different types of polymers. Examination of the weights provides a human-interpretable understanding of the network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源