论文标题

炮法传感器放置的优化用于手臂运动识别

Optimization of Forcemyography Sensor Placement for Arm Movement Recognition

论文作者

Xu, Xiaohao, Du, Zihao, Zhang, Huaxin, Zhang, Ruichao, Hong, Zihan, Huang, Qin, Han, Bin

论文摘要

如何设计用于人类运动识别的最佳可穿戴设备对于可靠,准确的人机合作至关重要。先前的作品主要是通过启发式启发可穿戴设备。取而代之的是,本文提出了一个学术问题:我们可以设计一种优化算法来优化可穿戴设备的制造,例如自动弄清最佳传感器布置吗?具体而言,这项工作着重于优化用于FMG臂章的示型传感器(FMG)传感器的放置,以应用手臂运动识别。首先,根据图理论,考虑传感器的信号和连接性,对臂章进行了建模。然后,引入了基于图形的臂章建模网络(GAM-NET),以供手臂运动识别。之后,制定了FMG臂带的传感器放置优化,并提出了具有贪婪的本地搜索的优化算法。为了研究我们的优化算法的有效性,收集了使用带有16个传感器的FMG臂章的机械维护任务的数据集。我们的实验表明,仅使用使用我们的算法优化的4个传感器可以帮助使用所有传感器保持可比的识别精度。最后,从生理视图验证了优化的传感器放置结果。这项工作希望阐明考虑下游任务(例如人类生物信号收集和运动识别)的可穿戴设备的自动制造。我们的代码和数据集可从https://github.com/jerryx1110/iros22-fmg-sensor-optimization获得

How to design an optimal wearable device for human movement recognition is vital to reliable and accurate human-machine collaboration. Previous works mainly fabricate wearable devices heuristically. Instead, this paper raises an academic question: can we design an optimization algorithm to optimize the fabrication of wearable devices such as figuring out the best sensor arrangement automatically? Specifically, this work focuses on optimizing the placement of Forcemyography (FMG) sensors for FMG armbands in the application of arm movement recognition. Firstly, based on graph theory, the armband is modeled considering sensors' signals and connectivity. Then, a Graph-based Armband Modeling Network (GAM-Net) is introduced for arm movement recognition. Afterward, the sensor placement optimization for FMG armbands is formulated and an optimization algorithm with greedy local search is proposed. To study the effectiveness of our optimization algorithm, a dataset for mechanical maintenance tasks using FMG armbands with 16 sensors is collected. Our experiments show that using only 4 sensors optimized with our algorithm can help maintain a comparable recognition accuracy to using all sensors. Finally, the optimized sensor placement result is verified from a physiological view. This work would like to shed light on the automatic fabrication of wearable devices considering downstream tasks, such as human biological signal collection and movement recognition. Our code and dataset are available at https://github.com/JerryX1110/IROS22-FMG-Sensor-Optimization

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源